使用Hf 0 .₅Zr 0的节能混合油藏计算。₅O₂具有集成光学和电突触功能的铁电薄膜晶体管。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-06-16 DOI:10.1002/smll.202501276
Seungjun Lee, Gwangmin An, Doohyung Kim, Hyeonho Lee, Sungjun Kim, Tae-Hyeon Kim
{"title":"使用Hf 0 .₅Zr 0的节能混合油藏计算。₅O₂具有集成光学和电突触功能的铁电薄膜晶体管。","authors":"Seungjun Lee,&nbsp;Gwangmin An,&nbsp;Doohyung Kim,&nbsp;Hyeonho Lee,&nbsp;Sungjun Kim,&nbsp;Tae-Hyeon Kim","doi":"10.1002/smll.202501276","DOIUrl":null,"url":null,"abstract":"<p>This study introduces an ultralow power hybrid reservoir computing (HRC) system employing an indium gallium zinc oxide (IGZO)/Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> (HZO)-based ferroelectric thin-film transistor (FeTFT) for neuromorphic applications. The proposed FeTFT system integrates volatile and nonvolatile functionalities, respectively driven by optical and electrical stimuli, to emulate short-term and long-term synaptic behaviors. Leveraging persistent photoconductivity in the IGZO channel under optical excitation, the FeTFT exhibits dynamic reservoir characteristics, while HZO-induced ferroelectric polarization enables robust long-term memory for the readout layer. Experimental results demonstrate enhanced energy efficiency with a power consumption of ≈22 pW per device and distinct separation of 4- and 5-bit reservoir states. This system achieves competitive accuracies of 90.48% and 88.23% for Modified National Institute of Standards and Technology (MNIST) and fashion MNIST datasets, respectively, surpassing state-of-the-art hardware-based implementations. By consolidating reservoir and readout layers within a single device, this study advances the scalability and feasibility of next-generation neuromorphic computing systems. Furthermore, the implementation of HRC leveraging optical and electrical pulses presents promising prospects for applications involving visual neuron functionalities.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 32","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Efficient Hybrid Reservoir Computing Using Hf0.5Zr0.5O2 Ferroelectric Thin-Film Transistors with an Integrated Optically and Electrically Synaptic Functions\",\"authors\":\"Seungjun Lee,&nbsp;Gwangmin An,&nbsp;Doohyung Kim,&nbsp;Hyeonho Lee,&nbsp;Sungjun Kim,&nbsp;Tae-Hyeon Kim\",\"doi\":\"10.1002/smll.202501276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study introduces an ultralow power hybrid reservoir computing (HRC) system employing an indium gallium zinc oxide (IGZO)/Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> (HZO)-based ferroelectric thin-film transistor (FeTFT) for neuromorphic applications. The proposed FeTFT system integrates volatile and nonvolatile functionalities, respectively driven by optical and electrical stimuli, to emulate short-term and long-term synaptic behaviors. Leveraging persistent photoconductivity in the IGZO channel under optical excitation, the FeTFT exhibits dynamic reservoir characteristics, while HZO-induced ferroelectric polarization enables robust long-term memory for the readout layer. Experimental results demonstrate enhanced energy efficiency with a power consumption of ≈22 pW per device and distinct separation of 4- and 5-bit reservoir states. This system achieves competitive accuracies of 90.48% and 88.23% for Modified National Institute of Standards and Technology (MNIST) and fashion MNIST datasets, respectively, surpassing state-of-the-art hardware-based implementations. By consolidating reservoir and readout layers within a single device, this study advances the scalability and feasibility of next-generation neuromorphic computing systems. Furthermore, the implementation of HRC leveraging optical and electrical pulses presents promising prospects for applications involving visual neuron functionalities.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 32\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501276\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501276","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种超低功耗混合储层计算(HRC)系统,该系统采用基于铟镓氧化锌(IGZO)/Hf0.5Zr0.5O2 (HZO)的铁电薄膜晶体管(FeTFT)用于神经形态应用。该系统集成了易失性和非易失性功能,分别由光学和电刺激驱动,以模拟短期和长期突触行为。利用光激发下IGZO通道中持续的光电导率,FeTFT表现出动态储层特性,而hzo诱导的铁电极化为读出层提供了强大的长期记忆。实验结果表明,每个器件的功耗约为22 pW,并且可以明显分离4位和5位储层状态,从而提高了能源效率。该系统在修改的美国国家标准与技术研究所(MNIST)和时尚的MNIST数据集上分别达到了90.48%和88.23%的竞争精度,超过了最先进的基于硬件的实现。通过在单个设备中整合储层和读出层,本研究提高了下一代神经形态计算系统的可扩展性和可行性。此外,利用光脉冲和电脉冲实现HRC在涉及视觉神经元功能的应用中具有广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Energy Efficient Hybrid Reservoir Computing Using Hf0.5Zr0.5O2 Ferroelectric Thin-Film Transistors with an Integrated Optically and Electrically Synaptic Functions

Energy Efficient Hybrid Reservoir Computing Using Hf0.5Zr0.5O2 Ferroelectric Thin-Film Transistors with an Integrated Optically and Electrically Synaptic Functions

This study introduces an ultralow power hybrid reservoir computing (HRC) system employing an indium gallium zinc oxide (IGZO)/Hf0.5Zr0.5O2 (HZO)-based ferroelectric thin-film transistor (FeTFT) for neuromorphic applications. The proposed FeTFT system integrates volatile and nonvolatile functionalities, respectively driven by optical and electrical stimuli, to emulate short-term and long-term synaptic behaviors. Leveraging persistent photoconductivity in the IGZO channel under optical excitation, the FeTFT exhibits dynamic reservoir characteristics, while HZO-induced ferroelectric polarization enables robust long-term memory for the readout layer. Experimental results demonstrate enhanced energy efficiency with a power consumption of ≈22 pW per device and distinct separation of 4- and 5-bit reservoir states. This system achieves competitive accuracies of 90.48% and 88.23% for Modified National Institute of Standards and Technology (MNIST) and fashion MNIST datasets, respectively, surpassing state-of-the-art hardware-based implementations. By consolidating reservoir and readout layers within a single device, this study advances the scalability and feasibility of next-generation neuromorphic computing systems. Furthermore, the implementation of HRC leveraging optical and electrical pulses presents promising prospects for applications involving visual neuron functionalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信