基于局部线性嵌入的工业软测量半监督稀疏堆叠自编码器。

Yan-Lin He, Yu Jiang, Hui-Hui Gao, Yuan Xu, Qun-Xiong Zhu
{"title":"基于局部线性嵌入的工业软测量半监督稀疏堆叠自编码器。","authors":"Yan-Lin He, Yu Jiang, Hui-Hui Gao, Yuan Xu, Qun-Xiong Zhu","doi":"10.1016/j.isatra.2025.05.044","DOIUrl":null,"url":null,"abstract":"<p><p>Data-driven industrial soft sensor modeling techniques have been widely applied in predicting key variables in complex industrial processes. However, with industrial processes becoming increasingly intricate, the data they produce exhibit characteristics such as strong temporal dependencies, high dimensionality, and local structures, posing significant challenges for soft sensing. To address these issues, this paper proposes novel Semi-Supervised Sparse Stacked Autoencoder integrated with the Local Linear Embedding algorithm (SS-SAE-LLE). Unlike traditional autoencoders (AE), which capture hierarchical data features by minimizing global fitting error, SS-SAE-LLE simultaneously accounts for the spatio-temporal characteristics of the data through the local linear embedding algorithm. Moreover, it incorporates supervised tuning by leveraging labeled data and training with a semi-supervised learning framework, further improving prediction accuracy. To evaluate the feasibility of the proposed method, experiments are conducted on PTA solvent and SRU system datasets. The simulation results demonstrate that SS-SAE-LLE achieves higher prediction accuracy than other models, highlighting its applicability in the field of industrial soft sensor modeling.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel semi-supervised sparse stacked autoencoder integrated with local linear embedding for industrial soft sensing.\",\"authors\":\"Yan-Lin He, Yu Jiang, Hui-Hui Gao, Yuan Xu, Qun-Xiong Zhu\",\"doi\":\"10.1016/j.isatra.2025.05.044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data-driven industrial soft sensor modeling techniques have been widely applied in predicting key variables in complex industrial processes. However, with industrial processes becoming increasingly intricate, the data they produce exhibit characteristics such as strong temporal dependencies, high dimensionality, and local structures, posing significant challenges for soft sensing. To address these issues, this paper proposes novel Semi-Supervised Sparse Stacked Autoencoder integrated with the Local Linear Embedding algorithm (SS-SAE-LLE). Unlike traditional autoencoders (AE), which capture hierarchical data features by minimizing global fitting error, SS-SAE-LLE simultaneously accounts for the spatio-temporal characteristics of the data through the local linear embedding algorithm. Moreover, it incorporates supervised tuning by leveraging labeled data and training with a semi-supervised learning framework, further improving prediction accuracy. To evaluate the feasibility of the proposed method, experiments are conducted on PTA solvent and SRU system datasets. The simulation results demonstrate that SS-SAE-LLE achieves higher prediction accuracy than other models, highlighting its applicability in the field of industrial soft sensor modeling.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2025.05.044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.05.044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据驱动的工业软传感器建模技术已广泛应用于复杂工业过程的关键变量预测。然而,随着工业过程变得越来越复杂,它们产生的数据表现出强时间依赖性、高维性和局部结构等特征,这给软测量带来了重大挑战。为了解决这些问题,本文提出了结合局部线性嵌入算法(SS-SAE-LLE)的新型半监督稀疏堆叠自编码器。与传统的自编码器(AE)通过最小化全局拟合误差来捕获分层数据特征不同,SS-SAE-LLE通过局部线性嵌入算法同时考虑数据的时空特征。此外,它通过利用标记数据和半监督学习框架的训练来结合监督调优,进一步提高了预测精度。为了评估该方法的可行性,在PTA溶剂和SRU系统数据集上进行了实验。仿真结果表明,与其他模型相比,SS-SAE-LLE模型具有更高的预测精度,突出了其在工业软传感器建模领域的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel semi-supervised sparse stacked autoencoder integrated with local linear embedding for industrial soft sensing.

Data-driven industrial soft sensor modeling techniques have been widely applied in predicting key variables in complex industrial processes. However, with industrial processes becoming increasingly intricate, the data they produce exhibit characteristics such as strong temporal dependencies, high dimensionality, and local structures, posing significant challenges for soft sensing. To address these issues, this paper proposes novel Semi-Supervised Sparse Stacked Autoencoder integrated with the Local Linear Embedding algorithm (SS-SAE-LLE). Unlike traditional autoencoders (AE), which capture hierarchical data features by minimizing global fitting error, SS-SAE-LLE simultaneously accounts for the spatio-temporal characteristics of the data through the local linear embedding algorithm. Moreover, it incorporates supervised tuning by leveraging labeled data and training with a semi-supervised learning framework, further improving prediction accuracy. To evaluate the feasibility of the proposed method, experiments are conducted on PTA solvent and SRU system datasets. The simulation results demonstrate that SS-SAE-LLE achieves higher prediction accuracy than other models, highlighting its applicability in the field of industrial soft sensor modeling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信