{"title":"用spoon处理空间解析转录组学数据中的均方差关系。","authors":"Kinnary Shah, Boyi Guo, Stephanie C Hicks","doi":"10.1093/biostatistics/kxaf012","DOIUrl":null,"url":null,"abstract":"<p><p>An important task in the analysis of spatially resolved transcriptomics (SRT) data is to identify spatially variable genes (SVGs), or genes that vary in a 2D space. Current approaches rank SVGs based on either $ P $-values or an effect size, such as the proportion of spatial variance. However, previous work in the analysis of RNA-sequencing data identified a technical bias with log-transformation, violating the \"mean-variance relationship\" of gene counts, where highly expressed genes are more likely to have a higher variance in counts but lower variance after log-transformation. Here, we demonstrate the mean-variance relationship in SRT data. Furthermore, we propose spoon, a statistical framework using empirical Bayes techniques to remove this bias, leading to more accurate prioritization of SVGs. We demonstrate the performance of spoon in both simulated and real SRT data. A software implementation of our method is available at https://bioconductor.org/packages/spoon.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12166475/pdf/","citationCount":"0","resultStr":"{\"title\":\"Addressing the mean-variance relationship in spatially resolved transcriptomics data with spoon.\",\"authors\":\"Kinnary Shah, Boyi Guo, Stephanie C Hicks\",\"doi\":\"10.1093/biostatistics/kxaf012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An important task in the analysis of spatially resolved transcriptomics (SRT) data is to identify spatially variable genes (SVGs), or genes that vary in a 2D space. Current approaches rank SVGs based on either $ P $-values or an effect size, such as the proportion of spatial variance. However, previous work in the analysis of RNA-sequencing data identified a technical bias with log-transformation, violating the \\\"mean-variance relationship\\\" of gene counts, where highly expressed genes are more likely to have a higher variance in counts but lower variance after log-transformation. Here, we demonstrate the mean-variance relationship in SRT data. Furthermore, we propose spoon, a statistical framework using empirical Bayes techniques to remove this bias, leading to more accurate prioritization of SVGs. We demonstrate the performance of spoon in both simulated and real SRT data. A software implementation of our method is available at https://bioconductor.org/packages/spoon.</p>\",\"PeriodicalId\":55357,\"journal\":{\"name\":\"Biostatistics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12166475/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxaf012\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxaf012","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Addressing the mean-variance relationship in spatially resolved transcriptomics data with spoon.
An important task in the analysis of spatially resolved transcriptomics (SRT) data is to identify spatially variable genes (SVGs), or genes that vary in a 2D space. Current approaches rank SVGs based on either $ P $-values or an effect size, such as the proportion of spatial variance. However, previous work in the analysis of RNA-sequencing data identified a technical bias with log-transformation, violating the "mean-variance relationship" of gene counts, where highly expressed genes are more likely to have a higher variance in counts but lower variance after log-transformation. Here, we demonstrate the mean-variance relationship in SRT data. Furthermore, we propose spoon, a statistical framework using empirical Bayes techniques to remove this bias, leading to more accurate prioritization of SVGs. We demonstrate the performance of spoon in both simulated and real SRT data. A software implementation of our method is available at https://bioconductor.org/packages/spoon.
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.