利用根鞘促进抗灾作物生产。

IF 17.3 1区 生物学 Q1 PLANT SCIENCES
Jin He, Qian Xu, Jiayin Pang, Yinglong Chen, Hans Lambers
{"title":"利用根鞘促进抗灾作物生产。","authors":"Jin He, Qian Xu, Jiayin Pang, Yinglong Chen, Hans Lambers","doi":"10.1016/j.tplants.2025.05.005","DOIUrl":null,"url":null,"abstract":"<p><p>Crops are increasingly exposed to drought and nutrient deficiencies, necessitating enhanced resistance to adverse conditions to meet the growing demands of the global population. While crop productivity has been greatly improved by integrating traits for high yield and stress tolerance through breeding, yield plateaus are now being observed. The rhizosheath, with physical and biological properties distinct from bulk soil, presents a promising target for enhanced tolerance to abiotic stresses such as drought and nutrient deficiencies. This multifunctional region contributes substantially to stress resistance and nutrient cycling, playing a pivotal role in the context of climate change and diminishing supplies of non-renewable fertilisers. We highlight the potential of the rhizosheath as a valuable breeding target to enhance crop productivity under diverse challenging environmental conditions.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing the rhizosheath for resilient crop production.\",\"authors\":\"Jin He, Qian Xu, Jiayin Pang, Yinglong Chen, Hans Lambers\",\"doi\":\"10.1016/j.tplants.2025.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crops are increasingly exposed to drought and nutrient deficiencies, necessitating enhanced resistance to adverse conditions to meet the growing demands of the global population. While crop productivity has been greatly improved by integrating traits for high yield and stress tolerance through breeding, yield plateaus are now being observed. The rhizosheath, with physical and biological properties distinct from bulk soil, presents a promising target for enhanced tolerance to abiotic stresses such as drought and nutrient deficiencies. This multifunctional region contributes substantially to stress resistance and nutrient cycling, playing a pivotal role in the context of climate change and diminishing supplies of non-renewable fertilisers. We highlight the potential of the rhizosheath as a valuable breeding target to enhance crop productivity under diverse challenging environmental conditions.</p>\",\"PeriodicalId\":23264,\"journal\":{\"name\":\"Trends in Plant Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tplants.2025.05.005\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2025.05.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

农作物越来越容易受到干旱和营养缺乏的影响,因此必须增强对不利条件的抵抗力,以满足全球人口日益增长的需求。虽然通过育种整合高产和抗逆性性状大大提高了作物生产力,但目前正在观察到产量停滞。根鞘具有不同于普通土壤的物理和生物特性,是提高对干旱和营养缺乏等非生物胁迫耐受性的一个有希望的目标。这个多功能区域对抗逆性和养分循环有重要贡献,在气候变化和不可再生肥料供应减少的背景下发挥着关键作用。我们强调了根鞘作为一个有价值的育种目标的潜力,以提高作物在各种具有挑战性的环境条件下的生产力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnessing the rhizosheath for resilient crop production.

Crops are increasingly exposed to drought and nutrient deficiencies, necessitating enhanced resistance to adverse conditions to meet the growing demands of the global population. While crop productivity has been greatly improved by integrating traits for high yield and stress tolerance through breeding, yield plateaus are now being observed. The rhizosheath, with physical and biological properties distinct from bulk soil, presents a promising target for enhanced tolerance to abiotic stresses such as drought and nutrient deficiencies. This multifunctional region contributes substantially to stress resistance and nutrient cycling, playing a pivotal role in the context of climate change and diminishing supplies of non-renewable fertilisers. We highlight the potential of the rhizosheath as a valuable breeding target to enhance crop productivity under diverse challenging environmental conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Plant Science
Trends in Plant Science 生物-植物科学
CiteScore
31.30
自引率
2.00%
发文量
196
审稿时长
6-12 weeks
期刊介绍: Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信