共振周期纳米图形的拉曼生成。

IF 3.2 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2025-06-02 DOI:10.1364/OE.563821
Ren-Jie Chen, Yeong Hwan Ko, Jae Woong Yoon, Robert Magnusson
{"title":"共振周期纳米图形的拉曼生成。","authors":"Ren-Jie Chen, Yeong Hwan Ko, Jae Woong Yoon, Robert Magnusson","doi":"10.1364/OE.563821","DOIUrl":null,"url":null,"abstract":"<p><p>We provide a new approach to Raman generation in silicon. Thus, we design and fabricate periodic nanophotonic devices incorporating guided-mode resonance to implement and enhance Raman photon generation. We apply one-dimensional gratings located between two distributed Bragg reflectors for feedback and improved efficiency. Operating in a single polarization state, by spectral and angular tuning, two resonance lines exhibit the proper spectral Raman separation for silicon. The efficiency of Raman photon generation can be enhanced by the resonance Q factor of two split resonant modes with proper grating parameter selection. With the pump at 1529 nm, we detect a Raman signal at 1660.4 nm. This wavelength separation corresponds to a Raman shift of 15.527 THz, which is close to the nominal Raman shift in silicon at 15.606 THz. The Raman generation experimental results match well with the theoretical analysis of split resonance modes enabled by the angular tuning technique. These results demonstrate that Raman enhancement using the guided-mode resonance effect is feasible.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 11","pages":"22244-22254"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Raman generation with resonant periodic nanopatterns.\",\"authors\":\"Ren-Jie Chen, Yeong Hwan Ko, Jae Woong Yoon, Robert Magnusson\",\"doi\":\"10.1364/OE.563821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We provide a new approach to Raman generation in silicon. Thus, we design and fabricate periodic nanophotonic devices incorporating guided-mode resonance to implement and enhance Raman photon generation. We apply one-dimensional gratings located between two distributed Bragg reflectors for feedback and improved efficiency. Operating in a single polarization state, by spectral and angular tuning, two resonance lines exhibit the proper spectral Raman separation for silicon. The efficiency of Raman photon generation can be enhanced by the resonance Q factor of two split resonant modes with proper grating parameter selection. With the pump at 1529 nm, we detect a Raman signal at 1660.4 nm. This wavelength separation corresponds to a Raman shift of 15.527 THz, which is close to the nominal Raman shift in silicon at 15.606 THz. The Raman generation experimental results match well with the theoretical analysis of split resonance modes enabled by the angular tuning technique. These results demonstrate that Raman enhancement using the guided-mode resonance effect is feasible.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"33 11\",\"pages\":\"22244-22254\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.563821\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.563821","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了一种在硅中产生拉曼的新方法。因此,我们设计并制造了包含导模共振的周期性纳米光子器件来实现和增强拉曼光子的产生。我们在两个分布布拉格反射器之间应用一维光栅进行反馈并提高效率。在单极化状态下,通过光谱和角度调谐,两条共振线表现出合适的硅光谱拉曼分离。通过选择合适的光栅参数,两种分裂谐振模式的共振Q因子可以提高拉曼光子的产生效率。当泵浦波长为1529 nm时,我们在1660.4 nm处检测到拉曼信号。这种波长分离对应于15.527 THz的拉曼位移,接近于硅中标称的15.606 THz的拉曼位移。拉曼产生的实验结果与角调谐技术产生的分裂共振模式的理论分析结果吻合得很好。结果表明,利用导模共振效应进行拉曼增强是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Raman generation with resonant periodic nanopatterns.

We provide a new approach to Raman generation in silicon. Thus, we design and fabricate periodic nanophotonic devices incorporating guided-mode resonance to implement and enhance Raman photon generation. We apply one-dimensional gratings located between two distributed Bragg reflectors for feedback and improved efficiency. Operating in a single polarization state, by spectral and angular tuning, two resonance lines exhibit the proper spectral Raman separation for silicon. The efficiency of Raman photon generation can be enhanced by the resonance Q factor of two split resonant modes with proper grating parameter selection. With the pump at 1529 nm, we detect a Raman signal at 1660.4 nm. This wavelength separation corresponds to a Raman shift of 15.527 THz, which is close to the nominal Raman shift in silicon at 15.606 THz. The Raman generation experimental results match well with the theoretical analysis of split resonance modes enabled by the angular tuning technique. These results demonstrate that Raman enhancement using the guided-mode resonance effect is feasible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信