{"title":"纳米工程外泌体用于Sirtuin3和胰岛素的双重递送,以点燃心肌缺血-再灌注时线粒体的恢复。","authors":"Jiaxin Yang, Xinyi Yun, Weihan Zheng, Huihui Zhang, Zi Yan, Youyu Chen, Wanting Xue, Siqi Mi, Ziyue Li, Hanxiao Sun, Guozhi Xiao, Zhenning Dai, Shiyu Li, Wenhua Huang","doi":"10.1186/s12951-025-03474-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute myocardial infarction remains a leading cause of mortality, with ischemia-reperfusion (I/R) injury causing severe myocardial damage through mitochondrial dysfunction. While mesenchymal stem cell-derived exosomes (MSC-Exo) show therapeutic potential, their limited targeting and insufficient mitochondrial protection restrict clinical application.</p><p><strong>Results: </strong>We developed a novel engineered exosome platform (Exo-I-S) using an IRES-driven bicistronic plasmid to co-load Sirtuin3 (SIRT3) and GPI-Insulin, aiming to enhance targeting efficiency and mitochondrial protection. The platform was evaluated in both in vitro and in vivo models of myocardial I/R injury. In vitro, Exo-I-S achieved faster cellular uptake, improved mitochondrial function, and reduced oxidative stress in H9c2 cells. The platform activated PI3K/AKT signaling, enhanced Glut4 translocation, and improved mitochondrial respiratory capacity. In a rat I/R injury model, Exo-I-S significantly reduced infarction size, improved cardiac function, and enhanced glucose metabolism, with superior therapeutic outcomes compared to unmodified exosomes.</p><p><strong>Conclusions: </strong>The dual functionality of Exo-I-S, combining insulin-mediated targeting with SIRT3-driven mitochondrial protection, provides a promising strategy for I/R injury treatment. Future studies should focus on optimizing targeting specificity and developing sustained release mechanisms to enhance clinical applicability.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"439"},"PeriodicalIF":12.6000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12164078/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanoscale engineered exosomes for dual delivery of Sirtuin3 and insulin to ignite mitochondrial recovery in myocardial ischemia-reperfusion.\",\"authors\":\"Jiaxin Yang, Xinyi Yun, Weihan Zheng, Huihui Zhang, Zi Yan, Youyu Chen, Wanting Xue, Siqi Mi, Ziyue Li, Hanxiao Sun, Guozhi Xiao, Zhenning Dai, Shiyu Li, Wenhua Huang\",\"doi\":\"10.1186/s12951-025-03474-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Acute myocardial infarction remains a leading cause of mortality, with ischemia-reperfusion (I/R) injury causing severe myocardial damage through mitochondrial dysfunction. While mesenchymal stem cell-derived exosomes (MSC-Exo) show therapeutic potential, their limited targeting and insufficient mitochondrial protection restrict clinical application.</p><p><strong>Results: </strong>We developed a novel engineered exosome platform (Exo-I-S) using an IRES-driven bicistronic plasmid to co-load Sirtuin3 (SIRT3) and GPI-Insulin, aiming to enhance targeting efficiency and mitochondrial protection. The platform was evaluated in both in vitro and in vivo models of myocardial I/R injury. In vitro, Exo-I-S achieved faster cellular uptake, improved mitochondrial function, and reduced oxidative stress in H9c2 cells. The platform activated PI3K/AKT signaling, enhanced Glut4 translocation, and improved mitochondrial respiratory capacity. In a rat I/R injury model, Exo-I-S significantly reduced infarction size, improved cardiac function, and enhanced glucose metabolism, with superior therapeutic outcomes compared to unmodified exosomes.</p><p><strong>Conclusions: </strong>The dual functionality of Exo-I-S, combining insulin-mediated targeting with SIRT3-driven mitochondrial protection, provides a promising strategy for I/R injury treatment. Future studies should focus on optimizing targeting specificity and developing sustained release mechanisms to enhance clinical applicability.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"439\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12164078/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03474-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03474-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Nanoscale engineered exosomes for dual delivery of Sirtuin3 and insulin to ignite mitochondrial recovery in myocardial ischemia-reperfusion.
Background: Acute myocardial infarction remains a leading cause of mortality, with ischemia-reperfusion (I/R) injury causing severe myocardial damage through mitochondrial dysfunction. While mesenchymal stem cell-derived exosomes (MSC-Exo) show therapeutic potential, their limited targeting and insufficient mitochondrial protection restrict clinical application.
Results: We developed a novel engineered exosome platform (Exo-I-S) using an IRES-driven bicistronic plasmid to co-load Sirtuin3 (SIRT3) and GPI-Insulin, aiming to enhance targeting efficiency and mitochondrial protection. The platform was evaluated in both in vitro and in vivo models of myocardial I/R injury. In vitro, Exo-I-S achieved faster cellular uptake, improved mitochondrial function, and reduced oxidative stress in H9c2 cells. The platform activated PI3K/AKT signaling, enhanced Glut4 translocation, and improved mitochondrial respiratory capacity. In a rat I/R injury model, Exo-I-S significantly reduced infarction size, improved cardiac function, and enhanced glucose metabolism, with superior therapeutic outcomes compared to unmodified exosomes.
Conclusions: The dual functionality of Exo-I-S, combining insulin-mediated targeting with SIRT3-driven mitochondrial protection, provides a promising strategy for I/R injury treatment. Future studies should focus on optimizing targeting specificity and developing sustained release mechanisms to enhance clinical applicability.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.