纳米工程外泌体用于Sirtuin3和胰岛素的双重递送,以点燃心肌缺血-再灌注时线粒体的恢复。

IF 12.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jiaxin Yang, Xinyi Yun, Weihan Zheng, Huihui Zhang, Zi Yan, Youyu Chen, Wanting Xue, Siqi Mi, Ziyue Li, Hanxiao Sun, Guozhi Xiao, Zhenning Dai, Shiyu Li, Wenhua Huang
{"title":"纳米工程外泌体用于Sirtuin3和胰岛素的双重递送,以点燃心肌缺血-再灌注时线粒体的恢复。","authors":"Jiaxin Yang, Xinyi Yun, Weihan Zheng, Huihui Zhang, Zi Yan, Youyu Chen, Wanting Xue, Siqi Mi, Ziyue Li, Hanxiao Sun, Guozhi Xiao, Zhenning Dai, Shiyu Li, Wenhua Huang","doi":"10.1186/s12951-025-03474-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute myocardial infarction remains a leading cause of mortality, with ischemia-reperfusion (I/R) injury causing severe myocardial damage through mitochondrial dysfunction. While mesenchymal stem cell-derived exosomes (MSC-Exo) show therapeutic potential, their limited targeting and insufficient mitochondrial protection restrict clinical application.</p><p><strong>Results: </strong>We developed a novel engineered exosome platform (Exo-I-S) using an IRES-driven bicistronic plasmid to co-load Sirtuin3 (SIRT3) and GPI-Insulin, aiming to enhance targeting efficiency and mitochondrial protection. The platform was evaluated in both in vitro and in vivo models of myocardial I/R injury. In vitro, Exo-I-S achieved faster cellular uptake, improved mitochondrial function, and reduced oxidative stress in H9c2 cells. The platform activated PI3K/AKT signaling, enhanced Glut4 translocation, and improved mitochondrial respiratory capacity. In a rat I/R injury model, Exo-I-S significantly reduced infarction size, improved cardiac function, and enhanced glucose metabolism, with superior therapeutic outcomes compared to unmodified exosomes.</p><p><strong>Conclusions: </strong>The dual functionality of Exo-I-S, combining insulin-mediated targeting with SIRT3-driven mitochondrial protection, provides a promising strategy for I/R injury treatment. Future studies should focus on optimizing targeting specificity and developing sustained release mechanisms to enhance clinical applicability.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"439"},"PeriodicalIF":12.6000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12164078/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanoscale engineered exosomes for dual delivery of Sirtuin3 and insulin to ignite mitochondrial recovery in myocardial ischemia-reperfusion.\",\"authors\":\"Jiaxin Yang, Xinyi Yun, Weihan Zheng, Huihui Zhang, Zi Yan, Youyu Chen, Wanting Xue, Siqi Mi, Ziyue Li, Hanxiao Sun, Guozhi Xiao, Zhenning Dai, Shiyu Li, Wenhua Huang\",\"doi\":\"10.1186/s12951-025-03474-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Acute myocardial infarction remains a leading cause of mortality, with ischemia-reperfusion (I/R) injury causing severe myocardial damage through mitochondrial dysfunction. While mesenchymal stem cell-derived exosomes (MSC-Exo) show therapeutic potential, their limited targeting and insufficient mitochondrial protection restrict clinical application.</p><p><strong>Results: </strong>We developed a novel engineered exosome platform (Exo-I-S) using an IRES-driven bicistronic plasmid to co-load Sirtuin3 (SIRT3) and GPI-Insulin, aiming to enhance targeting efficiency and mitochondrial protection. The platform was evaluated in both in vitro and in vivo models of myocardial I/R injury. In vitro, Exo-I-S achieved faster cellular uptake, improved mitochondrial function, and reduced oxidative stress in H9c2 cells. The platform activated PI3K/AKT signaling, enhanced Glut4 translocation, and improved mitochondrial respiratory capacity. In a rat I/R injury model, Exo-I-S significantly reduced infarction size, improved cardiac function, and enhanced glucose metabolism, with superior therapeutic outcomes compared to unmodified exosomes.</p><p><strong>Conclusions: </strong>The dual functionality of Exo-I-S, combining insulin-mediated targeting with SIRT3-driven mitochondrial protection, provides a promising strategy for I/R injury treatment. Future studies should focus on optimizing targeting specificity and developing sustained release mechanisms to enhance clinical applicability.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"439\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12164078/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03474-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03474-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:急性心肌梗死仍然是死亡的主要原因,缺血再灌注(I/R)损伤通过线粒体功能障碍导致严重的心肌损伤。虽然间充质干细胞来源的外泌体(MSC-Exo)显示出治疗潜力,但其有限的靶向性和线粒体保护不足限制了其临床应用。结果:我们开发了一种新的工程外泌体平台(Exo-I-S),利用ires驱动的双电子质粒共载Sirtuin3 (SIRT3)和gpi -胰岛素,旨在提高靶向效率和线粒体保护。在体外和体内心肌I/R损伤模型中对该平台进行了评估。在体外,Exo-I-S在H9c2细胞中实现了更快的细胞摄取,改善了线粒体功能,降低了氧化应激。该平台激活PI3K/AKT信号,增强Glut4易位,改善线粒体呼吸能力。在大鼠I/R损伤模型中,与未修饰的外泌体相比,Exo-I-S显著减小了梗死面积,改善了心功能,增强了葡萄糖代谢,具有更好的治疗效果。结论:Exo-I-S的双重功能,结合胰岛素介导的靶向和sirt3驱动的线粒体保护,为I/R损伤治疗提供了一种有希望的策略。未来的研究应着眼于优化靶向特异性和开发缓释机制,以提高临床适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoscale engineered exosomes for dual delivery of Sirtuin3 and insulin to ignite mitochondrial recovery in myocardial ischemia-reperfusion.

Background: Acute myocardial infarction remains a leading cause of mortality, with ischemia-reperfusion (I/R) injury causing severe myocardial damage through mitochondrial dysfunction. While mesenchymal stem cell-derived exosomes (MSC-Exo) show therapeutic potential, their limited targeting and insufficient mitochondrial protection restrict clinical application.

Results: We developed a novel engineered exosome platform (Exo-I-S) using an IRES-driven bicistronic plasmid to co-load Sirtuin3 (SIRT3) and GPI-Insulin, aiming to enhance targeting efficiency and mitochondrial protection. The platform was evaluated in both in vitro and in vivo models of myocardial I/R injury. In vitro, Exo-I-S achieved faster cellular uptake, improved mitochondrial function, and reduced oxidative stress in H9c2 cells. The platform activated PI3K/AKT signaling, enhanced Glut4 translocation, and improved mitochondrial respiratory capacity. In a rat I/R injury model, Exo-I-S significantly reduced infarction size, improved cardiac function, and enhanced glucose metabolism, with superior therapeutic outcomes compared to unmodified exosomes.

Conclusions: The dual functionality of Exo-I-S, combining insulin-mediated targeting with SIRT3-driven mitochondrial protection, provides a promising strategy for I/R injury treatment. Future studies should focus on optimizing targeting specificity and developing sustained release mechanisms to enhance clinical applicability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信