Tarun Agarwal, Valentina Onesto, Dishary Banerjee, Shengbo Guo, Alessandro Polini, Caleb D Vogt, Abhishek Viswanath, Timothy Esworthy, Haitao Cui, Aaron O'Donnell, Kiran Yellappa Vajanthri, Lorenzo Moroni, Ibrahim T Ozbolat, Angela Panoskaltsis-Mortari, Lijie Grace Zhang, Marco Costantini, Tapas Kumar Maiti
{"title":"组织工程中的生物3D打印:当前最先进的技术和对系统标准化和临床翻译的挑战。","authors":"Tarun Agarwal, Valentina Onesto, Dishary Banerjee, Shengbo Guo, Alessandro Polini, Caleb D Vogt, Abhishek Viswanath, Timothy Esworthy, Haitao Cui, Aaron O'Donnell, Kiran Yellappa Vajanthri, Lorenzo Moroni, Ibrahim T Ozbolat, Angela Panoskaltsis-Mortari, Lijie Grace Zhang, Marco Costantini, Tapas Kumar Maiti","doi":"10.1088/1758-5090/ade47a","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decade, 3D bioprinting has made significant progress, transforming into a key innovation in tissue engineering. Despite the early strides, critical challenges remain in 3D bioprinting that must be addressed to accelerate clinical translation. In particular, there is still a long way to go before functionally-mature, clinically-relevant tissue equivalents are developed. Current limitations range from the sub-optimal bioink properties and degree of biomimicry of bioprintable architectures, to the lack of stem/progenitor cells for massive cell expansion, and fundamental knowledge regarding in vitro culturing conditions. In addition to these problems, the absence of guidelines and well-regulated international standards is creating uncertainty among the biofabrication community stakeholders regarding the reliable and scalable production processes.
This review aims at exploring the latest developments in 3D bioprinting approaches, including various additive manufacturing techniques and their applications. A through discussion of common bioprinting techniques and recent progresses are compiled along with notable recent studies. Later we discuss the current challenges in clinical application of 3D bioprinting and the major bottlenecks in the commercialization of 3D bioprinted tissue equivalents, including the longevity of bioprinted organs, meeting biomechanical requirements, and the often underrated ethical and legal aspects. Amidst the progress of regulatory efforts for regenerative medicine, we also present an overview of the current regulatory concerns which should be taken into account to translate bioprinted tissues into clinical practice. At last, this review emphasizes future directions in 3D bioprinting that includes the transformative ideas like bioprinting in microgravity and the integration of artificial intelligence. The study concludes with the discussions on the need for collaborative efforts in resolving the technical and regulatory constraints to improve the quality, reliability, and reproducibility of bioprinted tissue equivalents to ultimately accomplish their successful clinical implementation.
.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D bioprinting in tissue engineering: current state-of-the-art and challenges towards system standardization and clinical translation.\",\"authors\":\"Tarun Agarwal, Valentina Onesto, Dishary Banerjee, Shengbo Guo, Alessandro Polini, Caleb D Vogt, Abhishek Viswanath, Timothy Esworthy, Haitao Cui, Aaron O'Donnell, Kiran Yellappa Vajanthri, Lorenzo Moroni, Ibrahim T Ozbolat, Angela Panoskaltsis-Mortari, Lijie Grace Zhang, Marco Costantini, Tapas Kumar Maiti\",\"doi\":\"10.1088/1758-5090/ade47a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past decade, 3D bioprinting has made significant progress, transforming into a key innovation in tissue engineering. Despite the early strides, critical challenges remain in 3D bioprinting that must be addressed to accelerate clinical translation. In particular, there is still a long way to go before functionally-mature, clinically-relevant tissue equivalents are developed. Current limitations range from the sub-optimal bioink properties and degree of biomimicry of bioprintable architectures, to the lack of stem/progenitor cells for massive cell expansion, and fundamental knowledge regarding in vitro culturing conditions. In addition to these problems, the absence of guidelines and well-regulated international standards is creating uncertainty among the biofabrication community stakeholders regarding the reliable and scalable production processes.
This review aims at exploring the latest developments in 3D bioprinting approaches, including various additive manufacturing techniques and their applications. A through discussion of common bioprinting techniques and recent progresses are compiled along with notable recent studies. Later we discuss the current challenges in clinical application of 3D bioprinting and the major bottlenecks in the commercialization of 3D bioprinted tissue equivalents, including the longevity of bioprinted organs, meeting biomechanical requirements, and the often underrated ethical and legal aspects. Amidst the progress of regulatory efforts for regenerative medicine, we also present an overview of the current regulatory concerns which should be taken into account to translate bioprinted tissues into clinical practice. At last, this review emphasizes future directions in 3D bioprinting that includes the transformative ideas like bioprinting in microgravity and the integration of artificial intelligence. The study concludes with the discussions on the need for collaborative efforts in resolving the technical and regulatory constraints to improve the quality, reliability, and reproducibility of bioprinted tissue equivalents to ultimately accomplish their successful clinical implementation.
.</p>\",\"PeriodicalId\":8964,\"journal\":{\"name\":\"Biofabrication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofabrication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1758-5090/ade47a\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ade47a","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
3D bioprinting in tissue engineering: current state-of-the-art and challenges towards system standardization and clinical translation.
Over the past decade, 3D bioprinting has made significant progress, transforming into a key innovation in tissue engineering. Despite the early strides, critical challenges remain in 3D bioprinting that must be addressed to accelerate clinical translation. In particular, there is still a long way to go before functionally-mature, clinically-relevant tissue equivalents are developed. Current limitations range from the sub-optimal bioink properties and degree of biomimicry of bioprintable architectures, to the lack of stem/progenitor cells for massive cell expansion, and fundamental knowledge regarding in vitro culturing conditions. In addition to these problems, the absence of guidelines and well-regulated international standards is creating uncertainty among the biofabrication community stakeholders regarding the reliable and scalable production processes.
This review aims at exploring the latest developments in 3D bioprinting approaches, including various additive manufacturing techniques and their applications. A through discussion of common bioprinting techniques and recent progresses are compiled along with notable recent studies. Later we discuss the current challenges in clinical application of 3D bioprinting and the major bottlenecks in the commercialization of 3D bioprinted tissue equivalents, including the longevity of bioprinted organs, meeting biomechanical requirements, and the often underrated ethical and legal aspects. Amidst the progress of regulatory efforts for regenerative medicine, we also present an overview of the current regulatory concerns which should be taken into account to translate bioprinted tissues into clinical practice. At last, this review emphasizes future directions in 3D bioprinting that includes the transformative ideas like bioprinting in microgravity and the integration of artificial intelligence. The study concludes with the discussions on the need for collaborative efforts in resolving the technical and regulatory constraints to improve the quality, reliability, and reproducibility of bioprinted tissue equivalents to ultimately accomplish their successful clinical implementation.
.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).