Felicity Hayes , Katrina Sharps , Willem E. van Caspel , Zbigniew Klimont , Chris Heyes , Hilde Fagerli
{"title":"解决甲烷排放问题的全球努力是进一步减少欧洲由臭氧引起的作物产量损失的关键因素。","authors":"Felicity Hayes , Katrina Sharps , Willem E. van Caspel , Zbigniew Klimont , Chris Heyes , Hilde Fagerli","doi":"10.1016/j.envpol.2025.126654","DOIUrl":null,"url":null,"abstract":"<div><div>This study has shown that there is a large potential to avoid wheat production losses through global efforts to reduce emissions of non-methane ozone precursors. In addition, global efforts to reduce methane concentrations could avoid additional wheat production losses due to the role of methane as an ozone precursor. Ex-post analysis on scenarios used within the European Monitoring and Evaluation Programme Meteorological Synthesizing Centre – West (EMEP-MSC-West) model revealed that within the United Nations Economic Commission for Europe (UNECE) region (excluding North America and Israel) in 2050 using the LOW future emission scenario, the reduction in ozone as a consequence of reducing global non-methane precursor emissions showed avoided wheat production losses of 6.4 million tonnes compared to that with current legislation. For the EU27 countries this was 3.1 million tonnes of wheat, equating to a value of approximately €675 million. Reducing both non-methane and methane ozone precursors globally have avoided wheat production losses in the UNECE region in 2050 totalling 9.0 million tonnes, compared to that calculated from emissions in current legislation. Within EU27 this was 4.4 million tonnes of wheat, equating to a value of approximately €976 million.</div><div>Within the UNECE region (excluding North America and Israel) the relative benefits of additional reductions in non-methane emissions within the region, non-methane emissions in the rest of the world, and global efforts to reduce methane emissions, were approximately equal. This demonstrates the benefits from reducing regional non-methane emissions, global non-methane emissions and global methane as contributing factors to avoiding crop yield losses due to their role in ozone formation.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"382 ","pages":"Article 126654"},"PeriodicalIF":7.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global efforts addressing methane emissions is a key factor to further reducing ozone-induced yield losses of crops in Europe\",\"authors\":\"Felicity Hayes , Katrina Sharps , Willem E. van Caspel , Zbigniew Klimont , Chris Heyes , Hilde Fagerli\",\"doi\":\"10.1016/j.envpol.2025.126654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study has shown that there is a large potential to avoid wheat production losses through global efforts to reduce emissions of non-methane ozone precursors. In addition, global efforts to reduce methane concentrations could avoid additional wheat production losses due to the role of methane as an ozone precursor. Ex-post analysis on scenarios used within the European Monitoring and Evaluation Programme Meteorological Synthesizing Centre – West (EMEP-MSC-West) model revealed that within the United Nations Economic Commission for Europe (UNECE) region (excluding North America and Israel) in 2050 using the LOW future emission scenario, the reduction in ozone as a consequence of reducing global non-methane precursor emissions showed avoided wheat production losses of 6.4 million tonnes compared to that with current legislation. For the EU27 countries this was 3.1 million tonnes of wheat, equating to a value of approximately €675 million. Reducing both non-methane and methane ozone precursors globally have avoided wheat production losses in the UNECE region in 2050 totalling 9.0 million tonnes, compared to that calculated from emissions in current legislation. Within EU27 this was 4.4 million tonnes of wheat, equating to a value of approximately €976 million.</div><div>Within the UNECE region (excluding North America and Israel) the relative benefits of additional reductions in non-methane emissions within the region, non-methane emissions in the rest of the world, and global efforts to reduce methane emissions, were approximately equal. This demonstrates the benefits from reducing regional non-methane emissions, global non-methane emissions and global methane as contributing factors to avoiding crop yield losses due to their role in ozone formation.</div></div>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"382 \",\"pages\":\"Article 126654\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0269749125010279\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125010279","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Global efforts addressing methane emissions is a key factor to further reducing ozone-induced yield losses of crops in Europe
This study has shown that there is a large potential to avoid wheat production losses through global efforts to reduce emissions of non-methane ozone precursors. In addition, global efforts to reduce methane concentrations could avoid additional wheat production losses due to the role of methane as an ozone precursor. Ex-post analysis on scenarios used within the European Monitoring and Evaluation Programme Meteorological Synthesizing Centre – West (EMEP-MSC-West) model revealed that within the United Nations Economic Commission for Europe (UNECE) region (excluding North America and Israel) in 2050 using the LOW future emission scenario, the reduction in ozone as a consequence of reducing global non-methane precursor emissions showed avoided wheat production losses of 6.4 million tonnes compared to that with current legislation. For the EU27 countries this was 3.1 million tonnes of wheat, equating to a value of approximately €675 million. Reducing both non-methane and methane ozone precursors globally have avoided wheat production losses in the UNECE region in 2050 totalling 9.0 million tonnes, compared to that calculated from emissions in current legislation. Within EU27 this was 4.4 million tonnes of wheat, equating to a value of approximately €976 million.
Within the UNECE region (excluding North America and Israel) the relative benefits of additional reductions in non-methane emissions within the region, non-methane emissions in the rest of the world, and global efforts to reduce methane emissions, were approximately equal. This demonstrates the benefits from reducing regional non-methane emissions, global non-methane emissions and global methane as contributing factors to avoiding crop yield losses due to their role in ozone formation.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.