{"title":"机器人辅助捕获- selex RNA适体结合小分子。","authors":"Tjasa Legen, Günter Mayer","doi":"10.1002/cbic.202500264","DOIUrl":null,"url":null,"abstract":"<p><p>Due to their small size, stability, and cost-effectiveness compared to antibodies, aptamers developed by systematic evolution of ligands by exponential enrichment (SELEX) are promising candidates for the detection of small molecules. In SELEX, a small target molecule is usually covalently immobilized on a surface to separate bound from unbound nucleic acid sequences. However, this immobilization alters the molecule, that is, additional chemical entities are added and the electron distribution is altered, compromising the enrichment properties. To overcome this problem, a capture SELEX method has been successfully developed in which the RNA or DNA libraries are bound to a surface via a complementary oligodeoxynucleotide, and the soluble ligand is used to capture nucleic acids that bind to it from that surface. Herein, the development of an automated version of the capture SELEX method for the identification of RNA aptamers that bind small molecules is described. This method is fully automated and performs up to 12 iterative selection cycles without manual interference in 72 h. The approach is therefore suitable as rapid route to aptamers and enables resource-efficient test selections to assess \"aptamerogenicity\" of a target.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e2500264"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robotic-Assisted Capture-Systematic Evolution of Ligands by Exponential Enrichment of RNA Aptamers Binding to Small Molecules.\",\"authors\":\"Tjasa Legen, Günter Mayer\",\"doi\":\"10.1002/cbic.202500264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to their small size, stability, and cost-effectiveness compared to antibodies, aptamers developed by systematic evolution of ligands by exponential enrichment (SELEX) are promising candidates for the detection of small molecules. In SELEX, a small target molecule is usually covalently immobilized on a surface to separate bound from unbound nucleic acid sequences. However, this immobilization alters the molecule, that is, additional chemical entities are added and the electron distribution is altered, compromising the enrichment properties. To overcome this problem, a capture SELEX method has been successfully developed in which the RNA or DNA libraries are bound to a surface via a complementary oligodeoxynucleotide, and the soluble ligand is used to capture nucleic acids that bind to it from that surface. Herein, the development of an automated version of the capture SELEX method for the identification of RNA aptamers that bind small molecules is described. This method is fully automated and performs up to 12 iterative selection cycles without manual interference in 72 h. The approach is therefore suitable as rapid route to aptamers and enables resource-efficient test selections to assess \\\"aptamerogenicity\\\" of a target.</p>\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":\" \",\"pages\":\"e2500264\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202500264\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500264","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Robotic-Assisted Capture-Systematic Evolution of Ligands by Exponential Enrichment of RNA Aptamers Binding to Small Molecules.
Due to their small size, stability, and cost-effectiveness compared to antibodies, aptamers developed by systematic evolution of ligands by exponential enrichment (SELEX) are promising candidates for the detection of small molecules. In SELEX, a small target molecule is usually covalently immobilized on a surface to separate bound from unbound nucleic acid sequences. However, this immobilization alters the molecule, that is, additional chemical entities are added and the electron distribution is altered, compromising the enrichment properties. To overcome this problem, a capture SELEX method has been successfully developed in which the RNA or DNA libraries are bound to a surface via a complementary oligodeoxynucleotide, and the soluble ligand is used to capture nucleic acids that bind to it from that surface. Herein, the development of an automated version of the capture SELEX method for the identification of RNA aptamers that bind small molecules is described. This method is fully automated and performs up to 12 iterative selection cycles without manual interference in 72 h. The approach is therefore suitable as rapid route to aptamers and enables resource-efficient test selections to assess "aptamerogenicity" of a target.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).