太阳能电池板性能退化和自适应缓解策略的综合综述

IF 2.3 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Haoyu Yang, Yanyan Yin, Ahmed Abu-Siada
{"title":"太阳能电池板性能退化和自适应缓解策略的综合综述","authors":"Haoyu Yang,&nbsp;Yanyan Yin,&nbsp;Ahmed Abu-Siada","doi":"10.1049/cth2.70040","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a comprehensive review of solar panel performance degradation in both industrial and residential sectors. Drawing on a wide range of academic studies, the paper systematically analyses the key factors affecting the performance of photovoltaic (PV) systems to provide in-depth understanding of degradation mechanisms along with effective countermeasures. These factors include the selection and properties of the materials used in PV panel manufacturing, changes in environmental conditions, the inherent degradation rate of materials and user behaviour. The paper aims to comprehensively reveal the mechanisms by which environmental and human factors contribute to PV panel performance degradation, assess their impact on the operational efficiency of the power systems and explore feasible adaptive solutions to mitigate or restore PV system performance. The paper also incorporates a technical framework aligned with the IEC 61850 standard and provides constructive recommendations for enhancing the efficiency and reliability of renewable power systems.</p><p>The paper holds substantial theoretical and practical significance. At a macro level, it contributes to reducing the overall cost of PV energy production while minimising investment in equipment maintenance and human resources. At a micro level, it enhances the utilisation efficiency and basic performance of PV systems. The recommendations of this paper not only support the sustainable growth of the renewable energy industry but also facilitate the synergistic expansion of the upstream and downstream industrial chain, fostering new employment opportunities and business potential. For individual users, businesses and the public sector, the paper provides a robust scientific foundation for developing future energy strategies with practical insights to advance global sustainable development goals.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70040","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Review of Solar Panel Performance Degradation and Adaptive Mitigation Strategies\",\"authors\":\"Haoyu Yang,&nbsp;Yanyan Yin,&nbsp;Ahmed Abu-Siada\",\"doi\":\"10.1049/cth2.70040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a comprehensive review of solar panel performance degradation in both industrial and residential sectors. Drawing on a wide range of academic studies, the paper systematically analyses the key factors affecting the performance of photovoltaic (PV) systems to provide in-depth understanding of degradation mechanisms along with effective countermeasures. These factors include the selection and properties of the materials used in PV panel manufacturing, changes in environmental conditions, the inherent degradation rate of materials and user behaviour. The paper aims to comprehensively reveal the mechanisms by which environmental and human factors contribute to PV panel performance degradation, assess their impact on the operational efficiency of the power systems and explore feasible adaptive solutions to mitigate or restore PV system performance. The paper also incorporates a technical framework aligned with the IEC 61850 standard and provides constructive recommendations for enhancing the efficiency and reliability of renewable power systems.</p><p>The paper holds substantial theoretical and practical significance. At a macro level, it contributes to reducing the overall cost of PV energy production while minimising investment in equipment maintenance and human resources. At a micro level, it enhances the utilisation efficiency and basic performance of PV systems. The recommendations of this paper not only support the sustainable growth of the renewable energy industry but also facilitate the synergistic expansion of the upstream and downstream industrial chain, fostering new employment opportunities and business potential. For individual users, businesses and the public sector, the paper provides a robust scientific foundation for developing future energy strategies with practical insights to advance global sustainable development goals.</p>\",\"PeriodicalId\":50382,\"journal\":{\"name\":\"IET Control Theory and Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70040\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cth2.70040\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.70040","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了太阳能电池板性能退化在工业和住宅部门的全面审查。本文在广泛的学术研究基础上,系统分析了影响光伏系统性能的关键因素,为深入了解光伏系统性能退化机制提供有效的对策。这些因素包括光伏板制造中使用的材料的选择和性能、环境条件的变化、材料的固有降解率和用户行为。本文旨在全面揭示环境和人为因素导致光伏电池板性能下降的机制,评估其对电力系统运行效率的影响,并探索缓解或恢复光伏系统性能的可行自适应解决方案。该文件还结合了与IEC 61850标准一致的技术框架,并为提高可再生能源系统的效率和可靠性提供了建设性建议。本文具有重要的理论和现实意义。在宏观层面上,它有助于降低光伏能源生产的总体成本,同时最大限度地减少设备维护和人力资源的投资。在微观层面上,它提高了光伏系统的利用效率和基本性能。本文提出的建议不仅可以支持可再生能源产业的可持续发展,还可以促进上下游产业链的协同扩张,培育新的就业机会和商业潜力。对于个人用户、企业和公共部门,本文为制定未来能源战略提供了坚实的科学基础,并提供了实际见解,以推进全球可持续发展目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Comprehensive Review of Solar Panel Performance Degradation and Adaptive Mitigation Strategies

A Comprehensive Review of Solar Panel Performance Degradation and Adaptive Mitigation Strategies

This paper presents a comprehensive review of solar panel performance degradation in both industrial and residential sectors. Drawing on a wide range of academic studies, the paper systematically analyses the key factors affecting the performance of photovoltaic (PV) systems to provide in-depth understanding of degradation mechanisms along with effective countermeasures. These factors include the selection and properties of the materials used in PV panel manufacturing, changes in environmental conditions, the inherent degradation rate of materials and user behaviour. The paper aims to comprehensively reveal the mechanisms by which environmental and human factors contribute to PV panel performance degradation, assess their impact on the operational efficiency of the power systems and explore feasible adaptive solutions to mitigate or restore PV system performance. The paper also incorporates a technical framework aligned with the IEC 61850 standard and provides constructive recommendations for enhancing the efficiency and reliability of renewable power systems.

The paper holds substantial theoretical and practical significance. At a macro level, it contributes to reducing the overall cost of PV energy production while minimising investment in equipment maintenance and human resources. At a micro level, it enhances the utilisation efficiency and basic performance of PV systems. The recommendations of this paper not only support the sustainable growth of the renewable energy industry but also facilitate the synergistic expansion of the upstream and downstream industrial chain, fostering new employment opportunities and business potential. For individual users, businesses and the public sector, the paper provides a robust scientific foundation for developing future energy strategies with practical insights to advance global sustainable development goals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信