碎屑覆盖冰川热导率和空气动力学粗糙度估算的方法依赖

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Vicente Melo-Velasco, Evan Miles, Michael McCarthy, Thomas E. Shaw, Catriona Fyffe, Adrià Fontrodona-Bach, Francesca Pellicciotti
{"title":"碎屑覆盖冰川热导率和空气动力学粗糙度估算的方法依赖","authors":"Vicente Melo-Velasco,&nbsp;Evan Miles,&nbsp;Michael McCarthy,&nbsp;Thomas E. Shaw,&nbsp;Catriona Fyffe,&nbsp;Adrià Fontrodona-Bach,&nbsp;Francesca Pellicciotti","doi":"10.1029/2025JF008360","DOIUrl":null,"url":null,"abstract":"<p>Rock debris partially covers glaciers worldwide, with varying extents and distributions, and controls sub-debris melt rates by modifying energy transfer from the atmosphere to the ice. Two key physical properties controlling this energy exchange are thermal conductivity <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <annotation> $(k)$</annotation>\n </semantics></math> and aerodynamic roughness length <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({z}_{0}\\right)$</annotation>\n </semantics></math>. Accurate representation of these properties in energy-balance models is critical for understanding climate-glacier interactions and predicting the behavior of debris-covered glaciers. However, <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> have been derived at very few sites from limited local measurements, using different approaches, and most model applications rely on values reported from these few sites and studies. We derive <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> using established and modified approaches from data at three locations on Pirámide Glacier in the central Chilean Andes. By comparing methods and evaluating melt simulated with an energy-balance model, we reveal substantial differences between approaches. These lead to discrepancies between ice melt from energy-balance simulations and observed data, and highlight the impact of method choice on calculated ice melt. Optimizing <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> against measured melt appears a viable approach to constrain melt simulations. Determining <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> seems less critical, as it has a smaller impact on total melt. Profile aerodynamic method measurements for estimating <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math>, despite higher costs, are independent of ice melt calculations. The large, unexpected differences between methods indicate a substantial knowledge gap. The fact that field-derived <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> fail to work well in energy-balance models, suggests that model values represent bulk properties distinct from theoretical field measurements. Addressing this gap is essential for improving glacier melt predictions.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025JF008360","citationCount":"0","resultStr":"{\"title\":\"Method Dependence in Thermal Conductivity and Aerodynamic Roughness Length Estimates on a Debris-Covered Glacier\",\"authors\":\"Vicente Melo-Velasco,&nbsp;Evan Miles,&nbsp;Michael McCarthy,&nbsp;Thomas E. Shaw,&nbsp;Catriona Fyffe,&nbsp;Adrià Fontrodona-Bach,&nbsp;Francesca Pellicciotti\",\"doi\":\"10.1029/2025JF008360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rock debris partially covers glaciers worldwide, with varying extents and distributions, and controls sub-debris melt rates by modifying energy transfer from the atmosphere to the ice. Two key physical properties controlling this energy exchange are thermal conductivity <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation> $(k)$</annotation>\\n </semantics></math> and aerodynamic roughness length <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <msub>\\n <mi>z</mi>\\n <mn>0</mn>\\n </msub>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left({z}_{0}\\\\right)$</annotation>\\n </semantics></math>. Accurate representation of these properties in energy-balance models is critical for understanding climate-glacier interactions and predicting the behavior of debris-covered glaciers. However, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>z</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${z}_{0}$</annotation>\\n </semantics></math> have been derived at very few sites from limited local measurements, using different approaches, and most model applications rely on values reported from these few sites and studies. We derive <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>z</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${z}_{0}$</annotation>\\n </semantics></math> using established and modified approaches from data at three locations on Pirámide Glacier in the central Chilean Andes. By comparing methods and evaluating melt simulated with an energy-balance model, we reveal substantial differences between approaches. These lead to discrepancies between ice melt from energy-balance simulations and observed data, and highlight the impact of method choice on calculated ice melt. Optimizing <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> against measured melt appears a viable approach to constrain melt simulations. Determining <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>z</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${z}_{0}$</annotation>\\n </semantics></math> seems less critical, as it has a smaller impact on total melt. Profile aerodynamic method measurements for estimating <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>z</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${z}_{0}$</annotation>\\n </semantics></math>, despite higher costs, are independent of ice melt calculations. The large, unexpected differences between methods indicate a substantial knowledge gap. The fact that field-derived <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>z</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${z}_{0}$</annotation>\\n </semantics></math> fail to work well in energy-balance models, suggests that model values represent bulk properties distinct from theoretical field measurements. Addressing this gap is essential for improving glacier melt predictions.</p>\",\"PeriodicalId\":15887,\"journal\":{\"name\":\"Journal of Geophysical Research: Earth Surface\",\"volume\":\"130 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025JF008360\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Earth Surface\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025JF008360\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JF008360","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

岩石碎屑部分覆盖了世界范围内不同程度和分布的冰川,并通过改变从大气到冰的能量转移来控制亚碎屑融化速率。控制这种能量交换的两个关键物理性质是热导率(k)$ (k)$和气动粗糙度长度z0美元\离开({z} _ {0} \ )$ .在能量平衡模型中准确表示这些特性对于理解气候-冰川相互作用和预测碎屑覆盖冰川的行为至关重要。然而,k$ k$和z0 ${z}_{0}$是在极少数地点通过有限的局部测量,使用不同的方法得出的,并且大多数模型应用依赖于这些少数地点和研究报告的值。我们从智利中部安第斯山脉Pirámide冰川上三个地点的数据中,利用已建立的和改进的方法推导出k$ k$和z0 ${z}_{0}$。通过比较方法和评估与能量平衡模型模拟的熔体,我们揭示了方法之间的实质性差异。这导致能量平衡模拟的冰融化与观测数据之间存在差异,并突出了方法选择对计算冰融化的影响。根据实测熔体优化k$ k$似乎是约束熔体模拟的可行方法。确定z0 ${z}_{0}$似乎不那么重要,因为它对总熔体的影响较小。剖面气动方法测量估算z0 ${z}_{0}$,尽管成本较高,但与冰融化计算无关。方法之间巨大的、意想不到的差异表明存在实质性的知识差距。现场导出的k$ k$和z0 ${z}_{0}$在能量平衡模型中不能很好地工作,这表明模型值代表了与理论现场测量不同的体性质。解决这一差距对于改善冰川融化预测至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Method Dependence in Thermal Conductivity and Aerodynamic Roughness Length Estimates on a Debris-Covered Glacier

Rock debris partially covers glaciers worldwide, with varying extents and distributions, and controls sub-debris melt rates by modifying energy transfer from the atmosphere to the ice. Two key physical properties controlling this energy exchange are thermal conductivity ( k ) $(k)$ and aerodynamic roughness length z 0 $\left({z}_{0}\right)$ . Accurate representation of these properties in energy-balance models is critical for understanding climate-glacier interactions and predicting the behavior of debris-covered glaciers. However, k $k$ and z 0 ${z}_{0}$ have been derived at very few sites from limited local measurements, using different approaches, and most model applications rely on values reported from these few sites and studies. We derive k $k$ and z 0 ${z}_{0}$ using established and modified approaches from data at three locations on Pirámide Glacier in the central Chilean Andes. By comparing methods and evaluating melt simulated with an energy-balance model, we reveal substantial differences between approaches. These lead to discrepancies between ice melt from energy-balance simulations and observed data, and highlight the impact of method choice on calculated ice melt. Optimizing k $k$ against measured melt appears a viable approach to constrain melt simulations. Determining z 0 ${z}_{0}$ seems less critical, as it has a smaller impact on total melt. Profile aerodynamic method measurements for estimating z 0 ${z}_{0}$ , despite higher costs, are independent of ice melt calculations. The large, unexpected differences between methods indicate a substantial knowledge gap. The fact that field-derived k $k$ and z 0 ${z}_{0}$ fail to work well in energy-balance models, suggests that model values represent bulk properties distinct from theoretical field measurements. Addressing this gap is essential for improving glacier melt predictions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信