{"title":"用偏差校正的缩小尺度评估大西洋上空的云反馈","authors":"Shuchang Liu, Christian Zeman, Christoph Schär","doi":"10.1029/2024MS004661","DOIUrl":null,"url":null,"abstract":"<p>Clouds exert a significant impact on global temperatures and climate change. Cloud-radiative feedback (CRF) is one of the major sources of climate change uncertainty. Understanding CRF is therefore crucial for accurate climate projections. Biases like the double-ITCZ problem in Global Climate Models (GCMs) hamper precise climate projections. Here, we explore a bias-corrected downscaling method to constrain the cloud feedback uncertainties in the tropical and sub-tropical Atlantic region. We use regional climate model (RCM) simulations with convection permitting resolution, driven by debiased driving fields from three different global climate models (GCMs). Bias-corrected downscaling significantly reduces biases in ITCZ intensity and position, eliminating the double-ITCZ bias across all six experiments (three GCMs for historical and future periods). We explore the new methodology's potential to investigate the CRF in comparison to that of the driving GCMs. Results indicate that additional GCMs and RCMs are necessary for a more comprehensive uncertainty estimation and more conclusive results, while our simulations suggest a potentially narrower range of CRF over the tropical and subtropical Atlantic, primarily due to an improved representation of stratocumulus clouds. Our study highlights the potential of bias-corrected downscaling in constraining the uncertainty of simulations and estimates of cloud feedback and equilibrium climate sensitivity. The results advocate for further simulations with additional RCMs and domains for a more comprehensive analysis.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004661","citationCount":"0","resultStr":"{\"title\":\"Assessing Cloud Feedbacks Over the Atlantic With Bias-Corrected Downscaling\",\"authors\":\"Shuchang Liu, Christian Zeman, Christoph Schär\",\"doi\":\"10.1029/2024MS004661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Clouds exert a significant impact on global temperatures and climate change. Cloud-radiative feedback (CRF) is one of the major sources of climate change uncertainty. Understanding CRF is therefore crucial for accurate climate projections. Biases like the double-ITCZ problem in Global Climate Models (GCMs) hamper precise climate projections. Here, we explore a bias-corrected downscaling method to constrain the cloud feedback uncertainties in the tropical and sub-tropical Atlantic region. We use regional climate model (RCM) simulations with convection permitting resolution, driven by debiased driving fields from three different global climate models (GCMs). Bias-corrected downscaling significantly reduces biases in ITCZ intensity and position, eliminating the double-ITCZ bias across all six experiments (three GCMs for historical and future periods). We explore the new methodology's potential to investigate the CRF in comparison to that of the driving GCMs. Results indicate that additional GCMs and RCMs are necessary for a more comprehensive uncertainty estimation and more conclusive results, while our simulations suggest a potentially narrower range of CRF over the tropical and subtropical Atlantic, primarily due to an improved representation of stratocumulus clouds. Our study highlights the potential of bias-corrected downscaling in constraining the uncertainty of simulations and estimates of cloud feedback and equilibrium climate sensitivity. The results advocate for further simulations with additional RCMs and domains for a more comprehensive analysis.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"17 6\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004661\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004661\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004661","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Assessing Cloud Feedbacks Over the Atlantic With Bias-Corrected Downscaling
Clouds exert a significant impact on global temperatures and climate change. Cloud-radiative feedback (CRF) is one of the major sources of climate change uncertainty. Understanding CRF is therefore crucial for accurate climate projections. Biases like the double-ITCZ problem in Global Climate Models (GCMs) hamper precise climate projections. Here, we explore a bias-corrected downscaling method to constrain the cloud feedback uncertainties in the tropical and sub-tropical Atlantic region. We use regional climate model (RCM) simulations with convection permitting resolution, driven by debiased driving fields from three different global climate models (GCMs). Bias-corrected downscaling significantly reduces biases in ITCZ intensity and position, eliminating the double-ITCZ bias across all six experiments (three GCMs for historical and future periods). We explore the new methodology's potential to investigate the CRF in comparison to that of the driving GCMs. Results indicate that additional GCMs and RCMs are necessary for a more comprehensive uncertainty estimation and more conclusive results, while our simulations suggest a potentially narrower range of CRF over the tropical and subtropical Atlantic, primarily due to an improved representation of stratocumulus clouds. Our study highlights the potential of bias-corrected downscaling in constraining the uncertainty of simulations and estimates of cloud feedback and equilibrium climate sensitivity. The results advocate for further simulations with additional RCMs and domains for a more comprehensive analysis.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.