{"title":"海气CO2通量的区域不确定性分析","authors":"L. Gloege, M. D. Eisaman","doi":"10.1029/2024EA004032","DOIUrl":null,"url":null,"abstract":"<p>Accurate quantification of the ocean carbon sink and its associated uncertainty is critical for guiding international policy efforts and the accurate monitoring, reporting, and verification of marine carbon dioxide removal interventions. Here we use error propagation to break down the uncertainty in air–sea <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> flux into three primary sources: the gas transfer velocity <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>k</mi>\n <mi>w</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({k}_{w}\\right)$</annotation>\n </semantics></math>, the solubility <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>K</mi>\n <mn>0</mn>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({K}_{0}\\right)$</annotation>\n </semantics></math>, and the difference in partial pressure of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <mrow>\n <mi>Δ</mi>\n <msub>\n <mtext>pCO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n </mfenced>\n </mrow>\n <annotation> $\\left({\\Delta }{\\text{pCO}}_{2}\\right)$</annotation>\n </semantics></math> between the ocean and atmosphere. These are further decomposed into uncertainties from the underlying variables (e.g., temperature and salinity used to calculate <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${K}_{0}$</annotation>\n </semantics></math>). We find gas transfer velocity is the dominant term driving uncertainty in the air–sea <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> flux. <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${K}_{0}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <msub>\n <mtext>pCO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\Delta }{\\text{pCO}}_{2}$</annotation>\n </semantics></math> drive uncertainty near river mouths and eastern boundary upwelling zones, respectively. This methodology provides a foundation for a comprehensive quantification of uncertainty and its underlying drivers. The software used in this study is publicly available (Gloege, 2024, https://doi.org/10.5281/zenodo.13851044).</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA004032","citationCount":"0","resultStr":"{\"title\":\"Regional Uncertainty Analysis in the Air–Sea CO2 Flux\",\"authors\":\"L. Gloege, M. D. Eisaman\",\"doi\":\"10.1029/2024EA004032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate quantification of the ocean carbon sink and its associated uncertainty is critical for guiding international policy efforts and the accurate monitoring, reporting, and verification of marine carbon dioxide removal interventions. Here we use error propagation to break down the uncertainty in air–sea <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{2}$</annotation>\\n </semantics></math> flux into three primary sources: the gas transfer velocity <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <msub>\\n <mi>k</mi>\\n <mi>w</mi>\\n </msub>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left({k}_{w}\\\\right)$</annotation>\\n </semantics></math>, the solubility <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <msub>\\n <mi>K</mi>\\n <mn>0</mn>\\n </msub>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left({K}_{0}\\\\right)$</annotation>\\n </semantics></math>, and the difference in partial pressure of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{2}$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <mrow>\\n <mi>Δ</mi>\\n <msub>\\n <mtext>pCO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left({\\\\Delta }{\\\\text{pCO}}_{2}\\\\right)$</annotation>\\n </semantics></math> between the ocean and atmosphere. These are further decomposed into uncertainties from the underlying variables (e.g., temperature and salinity used to calculate <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${K}_{0}$</annotation>\\n </semantics></math>). We find gas transfer velocity is the dominant term driving uncertainty in the air–sea <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{2}$</annotation>\\n </semantics></math> flux. <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation> ${K}_{0}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <msub>\\n <mtext>pCO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Delta }{\\\\text{pCO}}_{2}$</annotation>\\n </semantics></math> drive uncertainty near river mouths and eastern boundary upwelling zones, respectively. This methodology provides a foundation for a comprehensive quantification of uncertainty and its underlying drivers. The software used in this study is publicly available (Gloege, 2024, https://doi.org/10.5281/zenodo.13851044).</p>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA004032\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EA004032\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA004032","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Regional Uncertainty Analysis in the Air–Sea CO2 Flux
Accurate quantification of the ocean carbon sink and its associated uncertainty is critical for guiding international policy efforts and the accurate monitoring, reporting, and verification of marine carbon dioxide removal interventions. Here we use error propagation to break down the uncertainty in air–sea flux into three primary sources: the gas transfer velocity , the solubility , and the difference in partial pressure of between the ocean and atmosphere. These are further decomposed into uncertainties from the underlying variables (e.g., temperature and salinity used to calculate ). We find gas transfer velocity is the dominant term driving uncertainty in the air–sea flux. and drive uncertainty near river mouths and eastern boundary upwelling zones, respectively. This methodology provides a foundation for a comprehensive quantification of uncertainty and its underlying drivers. The software used in this study is publicly available (Gloege, 2024, https://doi.org/10.5281/zenodo.13851044).
期刊介绍:
Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.