{"title":"通过芳构化驱动的无张力酮C-C键裂解的有氧醇化反应†","authors":"Renzhi Liu and Huiying Zeng","doi":"10.1039/D5GC01568E","DOIUrl":null,"url":null,"abstract":"<p >Alcohols are a crucial class of organic compounds that play pivotal roles not only in organic synthesis, materials science, and industrial production but also in the pharmaceutical and agrochemical industries. Conventional methods for synthesizing alcohols typically include olefin hydration, hydroboration followed by oxidation, and reduction reactions. In this study, we report a novel aerobic aldolization approach that employs aromatization-driven C–C bond cleavage for the deacetylation of unstrained ketones. This method enables the efficient generation of various primary and secondary alcohols using oxygen gas as an environmentally friendly oxidant and reactant. The reaction does not require the use of transition-metals, acids, or bases, demonstrating excellent functional group tolerance and broad substrate scope. Notably, this method is applicable to the late-stage modification of natural products and drug molecules, highlighting its potential in synthetic and medicinal chemistry.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 24","pages":" 7329-7335"},"PeriodicalIF":9.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerobic alcoholization via aromatization driven C–C bond cleavage of unstrained ketones†\",\"authors\":\"Renzhi Liu and Huiying Zeng\",\"doi\":\"10.1039/D5GC01568E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Alcohols are a crucial class of organic compounds that play pivotal roles not only in organic synthesis, materials science, and industrial production but also in the pharmaceutical and agrochemical industries. Conventional methods for synthesizing alcohols typically include olefin hydration, hydroboration followed by oxidation, and reduction reactions. In this study, we report a novel aerobic aldolization approach that employs aromatization-driven C–C bond cleavage for the deacetylation of unstrained ketones. This method enables the efficient generation of various primary and secondary alcohols using oxygen gas as an environmentally friendly oxidant and reactant. The reaction does not require the use of transition-metals, acids, or bases, demonstrating excellent functional group tolerance and broad substrate scope. Notably, this method is applicable to the late-stage modification of natural products and drug molecules, highlighting its potential in synthetic and medicinal chemistry.</p>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\" 24\",\"pages\":\" 7329-7335\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc01568e\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc01568e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Aerobic alcoholization via aromatization driven C–C bond cleavage of unstrained ketones†
Alcohols are a crucial class of organic compounds that play pivotal roles not only in organic synthesis, materials science, and industrial production but also in the pharmaceutical and agrochemical industries. Conventional methods for synthesizing alcohols typically include olefin hydration, hydroboration followed by oxidation, and reduction reactions. In this study, we report a novel aerobic aldolization approach that employs aromatization-driven C–C bond cleavage for the deacetylation of unstrained ketones. This method enables the efficient generation of various primary and secondary alcohols using oxygen gas as an environmentally friendly oxidant and reactant. The reaction does not require the use of transition-metals, acids, or bases, demonstrating excellent functional group tolerance and broad substrate scope. Notably, this method is applicable to the late-stage modification of natural products and drug molecules, highlighting its potential in synthetic and medicinal chemistry.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.