Rongfang Li , Xun Feng , Qianqian Tang , Peng Li , Yuebin Xi
{"title":"Ru-Co双金属界面协同电子调制高效析氢反应","authors":"Rongfang Li , Xun Feng , Qianqian Tang , Peng Li , Yuebin Xi","doi":"10.1016/j.matlet.2025.138918","DOIUrl":null,"url":null,"abstract":"<div><div>A heterointerface engineering strategy is developed to enhance alkaline hydrogen evolution reaction (HER) by constructing Ru<sup>3+</sup>-doped Co<sub>3</sub>O<sub>4</sub>-derived RuCoOx nanoarchitectures. Structural and electronic analyses reveal that controlled Ru<sup>3+</sup> doping induces interfacial charge redistribution, forming synergistic Ru-Co active sites that boost both intrinsic activity and electron transfer kinetics. The optimized RuCoOx-2 catalyst achieves an ultralow overpotential of 9 mV at 10 mA cm<sup>−2</sup> and a Tafel slope of 78.1 mV dec<sup>−1</sup> in 1 M KOH, outperforming most cobalt-based benchmarks. Remarkably, RuCoOx-2 maintains 98 % activity after 100 h at −1.1 V vs. RHE, despite containing only 4.5 wt% Ru. Density functional theory calculations confirm that Ru-Co interfacial synergy optimizes hydrogen adsorption free energy (ΔG_H* = −0.12 eV) and lowers water dissociation barriers, providing atomic-level insights into the enhanced HER mechanism.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"398 ","pages":"Article 138918"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic electronic modulation at Ru-Co bimetallic interfaces for high-efficiency hydrogen evolution reaction\",\"authors\":\"Rongfang Li , Xun Feng , Qianqian Tang , Peng Li , Yuebin Xi\",\"doi\":\"10.1016/j.matlet.2025.138918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A heterointerface engineering strategy is developed to enhance alkaline hydrogen evolution reaction (HER) by constructing Ru<sup>3+</sup>-doped Co<sub>3</sub>O<sub>4</sub>-derived RuCoOx nanoarchitectures. Structural and electronic analyses reveal that controlled Ru<sup>3+</sup> doping induces interfacial charge redistribution, forming synergistic Ru-Co active sites that boost both intrinsic activity and electron transfer kinetics. The optimized RuCoOx-2 catalyst achieves an ultralow overpotential of 9 mV at 10 mA cm<sup>−2</sup> and a Tafel slope of 78.1 mV dec<sup>−1</sup> in 1 M KOH, outperforming most cobalt-based benchmarks. Remarkably, RuCoOx-2 maintains 98 % activity after 100 h at −1.1 V vs. RHE, despite containing only 4.5 wt% Ru. Density functional theory calculations confirm that Ru-Co interfacial synergy optimizes hydrogen adsorption free energy (ΔG_H* = −0.12 eV) and lowers water dissociation barriers, providing atomic-level insights into the enhanced HER mechanism.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"398 \",\"pages\":\"Article 138918\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X25009474\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X25009474","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
通过构建Ru3+掺杂co3o4衍生RuCoOx纳米结构,提出了一种异质界面工程策略来增强碱性析氢反应(HER)。结构和电子分析表明,可控的Ru3+掺杂诱导界面电荷重新分配,形成协同的Ru-Co活性位点,提高了本征活性和电子转移动力学。优化后的RuCoOx-2催化剂在10 mA cm -2条件下的过电位为9 mV,在1 M KOH条件下的Tafel斜率为78.1 mV dec - 1,优于大多数钴基基准。值得注意的是,尽管RuCoOx-2只含有4.5 wt%的Ru,但在−1.1 V与RHE作用100小时后,RuCoOx-2仍保持98%的活性。密度泛函理论计算证实,Ru-Co界面协同作用优化了氢吸附自由能(ΔG_H* = - 0.12 eV),降低了水解离障碍,为增强的HER机制提供了原子水平的见解。
Synergistic electronic modulation at Ru-Co bimetallic interfaces for high-efficiency hydrogen evolution reaction
A heterointerface engineering strategy is developed to enhance alkaline hydrogen evolution reaction (HER) by constructing Ru3+-doped Co3O4-derived RuCoOx nanoarchitectures. Structural and electronic analyses reveal that controlled Ru3+ doping induces interfacial charge redistribution, forming synergistic Ru-Co active sites that boost both intrinsic activity and electron transfer kinetics. The optimized RuCoOx-2 catalyst achieves an ultralow overpotential of 9 mV at 10 mA cm−2 and a Tafel slope of 78.1 mV dec−1 in 1 M KOH, outperforming most cobalt-based benchmarks. Remarkably, RuCoOx-2 maintains 98 % activity after 100 h at −1.1 V vs. RHE, despite containing only 4.5 wt% Ru. Density functional theory calculations confirm that Ru-Co interfacial synergy optimizes hydrogen adsorption free energy (ΔG_H* = −0.12 eV) and lowers water dissociation barriers, providing atomic-level insights into the enhanced HER mechanism.
期刊介绍:
Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials.
Contributions include, but are not limited to, a variety of topics such as:
• Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors
• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart
• Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction
• Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.
• Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing.
• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic
• Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive