新型磁性可调高熵合金纳米粒子cu0.2 co0.2 zn0.2 mn0.2 2x (X = Ni0.2, Fe0.2, Ni0.2Fe0.2, Ni0.1Fe0.1)的易水热合成

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ismail Bencherifa , Ilyas Belkhettab , Oussama Dabou , Khaled Derkaoui , Abdelmounaim Chetoui , Amar Manseri , Billel Hamdoud , Mesbah Saâd
{"title":"新型磁性可调高熵合金纳米粒子cu0.2 co0.2 zn0.2 mn0.2 2x (X = Ni0.2, Fe0.2, Ni0.2Fe0.2, Ni0.1Fe0.1)的易水热合成","authors":"Ismail Bencherifa ,&nbsp;Ilyas Belkhettab ,&nbsp;Oussama Dabou ,&nbsp;Khaled Derkaoui ,&nbsp;Abdelmounaim Chetoui ,&nbsp;Amar Manseri ,&nbsp;Billel Hamdoud ,&nbsp;Mesbah Saâd","doi":"10.1016/j.mseb.2025.118526","DOIUrl":null,"url":null,"abstract":"<div><div>This study reports the synthesis of novel Cu<sub>0.2</sub>Co<sub>0.2</sub>Zn<sub>0.2</sub>Mn<sub>0.2</sub>X (X = Ni<sub>0.2</sub>, Fe<sub>0.2</sub>, Ni<sub>0.2</sub>Fe<sub>0.2</sub>, Ni<sub>0.1</sub>Fe<sub>0.1</sub>) high-entropy alloy (HEA) nanoparticles via a facile hydrothermal co-reduction method. Structural analysis confirmed the formation of dual face-centered cubic (FCC) solid solution phases with nanoscale crystallite sizes and high crystallinity. Scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS) revealed complex morphologies and elemental partitioning, while X-ray photoelectron spectroscopy (XPS) indicated notable core-level shifts due to electronic interactions among constituent elements. Magnetic characterization by vibrating sample magnetometer (VSM) showed that HEA-1 and HEA-4 have higher saturation magnetization (28.6–30.0 emu/g) than HEA-2 and HEA-3. Hysteresis loops with low squareness ratios (0.08–0.2) and coercivity variations (128.1–244.4 Oe) underscore the impact of microstructural features and phase composition. In particular, HEA-3′s low coercivity and hysteresis loss indicate its potential for low energy dissipation applications and suggest that post-synthetic modifications could further tailor magnetic properties. These findings demonstrate the effectiveness of compositional design and microstructural control in tuning the functional behavior of HEA nanoparticles for advanced magnetic applications.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"321 ","pages":"Article 118526"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile hydrothermal synthesis of novel Cu0.2Co0.2Zn0.2Mn0.2X (X = Ni0.2, Fe0.2, Ni0.2Fe0.2, Ni0.1Fe0.1) high-entropy alloy nanoparticles with tunable magnetic properties\",\"authors\":\"Ismail Bencherifa ,&nbsp;Ilyas Belkhettab ,&nbsp;Oussama Dabou ,&nbsp;Khaled Derkaoui ,&nbsp;Abdelmounaim Chetoui ,&nbsp;Amar Manseri ,&nbsp;Billel Hamdoud ,&nbsp;Mesbah Saâd\",\"doi\":\"10.1016/j.mseb.2025.118526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study reports the synthesis of novel Cu<sub>0.2</sub>Co<sub>0.2</sub>Zn<sub>0.2</sub>Mn<sub>0.2</sub>X (X = Ni<sub>0.2</sub>, Fe<sub>0.2</sub>, Ni<sub>0.2</sub>Fe<sub>0.2</sub>, Ni<sub>0.1</sub>Fe<sub>0.1</sub>) high-entropy alloy (HEA) nanoparticles via a facile hydrothermal co-reduction method. Structural analysis confirmed the formation of dual face-centered cubic (FCC) solid solution phases with nanoscale crystallite sizes and high crystallinity. Scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS) revealed complex morphologies and elemental partitioning, while X-ray photoelectron spectroscopy (XPS) indicated notable core-level shifts due to electronic interactions among constituent elements. Magnetic characterization by vibrating sample magnetometer (VSM) showed that HEA-1 and HEA-4 have higher saturation magnetization (28.6–30.0 emu/g) than HEA-2 and HEA-3. Hysteresis loops with low squareness ratios (0.08–0.2) and coercivity variations (128.1–244.4 Oe) underscore the impact of microstructural features and phase composition. In particular, HEA-3′s low coercivity and hysteresis loss indicate its potential for low energy dissipation applications and suggest that post-synthetic modifications could further tailor magnetic properties. These findings demonstrate the effectiveness of compositional design and microstructural control in tuning the functional behavior of HEA nanoparticles for advanced magnetic applications.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering: B\",\"volume\":\"321 \",\"pages\":\"Article 118526\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921510725005501\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725005501","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用水热共还原法制备了新型cu0.2 co0.2 zn0.2 mn0.2 2x (X = Ni0.2, Fe0.2, Ni0.2Fe0.2, Ni0.1Fe0.1)高熵合金(HEA)纳米颗粒。结构分析证实形成了具有纳米级晶粒尺寸和高结晶度的双面心立方(FCC)固溶相。扫描电子显微镜(SEM)和能谱分析(EDS)显示了复杂的形态和元素分配,而x射线光电子能谱(XPS)显示了由于组成元素之间的电子相互作用而引起的明显的核心能级偏移。用振动样品磁强计(VSM)对HEA-1和HEA-4的饱和磁化强度(28.6 ~ 30.0 emu/g)高于HEA-2和HEA-3。低方位比(0.08 ~ 0.2)和矫顽力变化(128.1 ~ 244.4 Oe)的磁滞回线强调了微观结构特征和相组成的影响。特别是HEA-3的低矫顽力和磁滞损失表明其具有低能量耗散应用的潜力,并表明合成后的修饰可以进一步定制磁性能。这些发现证明了成分设计和微观结构控制在调整HEA纳米颗粒的功能行为方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facile hydrothermal synthesis of novel Cu0.2Co0.2Zn0.2Mn0.2X (X = Ni0.2, Fe0.2, Ni0.2Fe0.2, Ni0.1Fe0.1) high-entropy alloy nanoparticles with tunable magnetic properties
This study reports the synthesis of novel Cu0.2Co0.2Zn0.2Mn0.2X (X = Ni0.2, Fe0.2, Ni0.2Fe0.2, Ni0.1Fe0.1) high-entropy alloy (HEA) nanoparticles via a facile hydrothermal co-reduction method. Structural analysis confirmed the formation of dual face-centered cubic (FCC) solid solution phases with nanoscale crystallite sizes and high crystallinity. Scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS) revealed complex morphologies and elemental partitioning, while X-ray photoelectron spectroscopy (XPS) indicated notable core-level shifts due to electronic interactions among constituent elements. Magnetic characterization by vibrating sample magnetometer (VSM) showed that HEA-1 and HEA-4 have higher saturation magnetization (28.6–30.0 emu/g) than HEA-2 and HEA-3. Hysteresis loops with low squareness ratios (0.08–0.2) and coercivity variations (128.1–244.4 Oe) underscore the impact of microstructural features and phase composition. In particular, HEA-3′s low coercivity and hysteresis loss indicate its potential for low energy dissipation applications and suggest that post-synthetic modifications could further tailor magnetic properties. These findings demonstrate the effectiveness of compositional design and microstructural control in tuning the functional behavior of HEA nanoparticles for advanced magnetic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信