在Young和粗糙微分方程的Besov设置中Lipschitz估计

IF 2.3 2区 数学 Q1 MATHEMATICS
Peter K. Friz , Hannes Kern , Pavel Zorin-Kranich
{"title":"在Young和粗糙微分方程的Besov设置中Lipschitz估计","authors":"Peter K. Friz ,&nbsp;Hannes Kern ,&nbsp;Pavel Zorin-Kranich","doi":"10.1016/j.jde.2025.113507","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a set of techniques that enable us to effectively recover Besov rough analysis from <em>p</em>-variation rough analysis. Central to our approach are new metric groups, in which some objects in rough path theory that have been previously viewed as two-parameter can be considered as path increments. Furthermore, we develop highly precise Lipschitz estimates for Young and rough differential equations, both in the variation and Besov scale.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113507"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipschitz estimates in the Besov settings for Young and rough differential equations\",\"authors\":\"Peter K. Friz ,&nbsp;Hannes Kern ,&nbsp;Pavel Zorin-Kranich\",\"doi\":\"10.1016/j.jde.2025.113507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop a set of techniques that enable us to effectively recover Besov rough analysis from <em>p</em>-variation rough analysis. Central to our approach are new metric groups, in which some objects in rough path theory that have been previously viewed as two-parameter can be considered as path increments. Furthermore, we develop highly precise Lipschitz estimates for Young and rough differential equations, both in the variation and Besov scale.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"443 \",\"pages\":\"Article 113507\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005340\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005340","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一套技术,使我们能够有效地从p变差粗分析中恢复Besov粗分析。我们方法的核心是新的度量组,其中粗糙路径理论中的一些对象以前被视为双参数,可以被视为路径增量。此外,我们开发了高度精确的Lipschitz估计Young和粗糙的微分方程,无论是在变化和Besov尺度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lipschitz estimates in the Besov settings for Young and rough differential equations
We develop a set of techniques that enable us to effectively recover Besov rough analysis from p-variation rough analysis. Central to our approach are new metric groups, in which some objects in rough path theory that have been previously viewed as two-parameter can be considered as path increments. Furthermore, we develop highly precise Lipschitz estimates for Young and rough differential equations, both in the variation and Besov scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信