J.-E. Wahlund , A.I. Eriksson , M.W. Morooka , S. Buchert , M. Persson , E. Vigren , J. Dreyer , W.S. Kurth , J.H. Jr Waite , J.-P. Lebreton , W.M. Farrell , I. Müller-Wodarg
{"title":"在土星赤道日面电离层-原位观测提供了一个动态和分层结构的不平衡的证据","authors":"J.-E. Wahlund , A.I. Eriksson , M.W. Morooka , S. Buchert , M. Persson , E. Vigren , J. Dreyer , W.S. Kurth , J.H. Jr Waite , J.-P. Lebreton , W.M. Farrell , I. Müller-Wodarg","doi":"10.1016/j.icarus.2025.116647","DOIUrl":null,"url":null,"abstract":"<div><div>The Cassini observations of Saturn's ionosphere during the proximal orbits 288–293 in the altitude range 1450–4000 km (above 1-bar level) are revisited. A thorough re-analysis is made of all 159 available Langmuir probe sweeps of the Radio & Plasma Wave Science (RPWS) measurements. We relate them to the RPWS plasma wave inferred electron number densities and compare them with the available Ion Neutral Mass Spectrometer (INMS) measurements of the H<sup>+</sup> and H<sub>3</sub><sup>+</sup> number densities. Different analysis methods are used by RPWS to provide consistent electron number density values for the whole measured altitude interval. Consistent RPWS electron number density (n<sub>e</sub>) and INMS positively charged ion number density (n<sub>i+</sub>) profiles are derived for altitudes above ~2200 km. Below this altitude the inability of INMS to measure ions above 8 amu at the 34 km/s flyby speed lead us to infer the presence of heavy ions (> 8 amu) and a negatively charged ion component, presumably related to infalling material from the D-ring of Saturn with its associated local ion-molecule-aerosol chemistry. This lower altitude region shows a highly time variable layered structure. The Langmuir probe data in this region are strongly affected by secondaries emitted from the spacecraft and sensor surfaces when traversing a molecule-rich atmosphere at 34 km/s. There are clear signatures of secondary electron and ion emissions from the spacecraft and sensor surfaces in the data. In the Langmuir probe sweep analysis, we correct for the effect of such impact-generated products. This gives corrected total ion number densities that can be compared to the INMS ion number densities and the electron number densities. From this analysis the number of negative ions and/or nm-sized aerosol/dust particles can be constrained. A clear ionospheric peak is not identified, not even at the lowest observed altitude of approximately 1450 km. There are clear latitudinal variations and temporal evolving structures, which we infer are representative of the difference in infalling material from different regions of the D-ring. In addition, there are indications of a strong heating source for the ambient electrons that are well above expected thermal equilibrium levels (up to 4000 K). The cause of this heating is unknown but may be linked to collisional deacceleration of infalling ring material. The observational profiles presented here can be used for ionosphere theory/model comparisons in the future.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"441 ","pages":"Article 116647"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the equatorial dayside ionosphere of Saturn – In-situ observations give evidence for a dynamic and layered structure in disequilibrium\",\"authors\":\"J.-E. Wahlund , A.I. Eriksson , M.W. Morooka , S. Buchert , M. Persson , E. Vigren , J. Dreyer , W.S. Kurth , J.H. Jr Waite , J.-P. Lebreton , W.M. Farrell , I. Müller-Wodarg\",\"doi\":\"10.1016/j.icarus.2025.116647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Cassini observations of Saturn's ionosphere during the proximal orbits 288–293 in the altitude range 1450–4000 km (above 1-bar level) are revisited. A thorough re-analysis is made of all 159 available Langmuir probe sweeps of the Radio & Plasma Wave Science (RPWS) measurements. We relate them to the RPWS plasma wave inferred electron number densities and compare them with the available Ion Neutral Mass Spectrometer (INMS) measurements of the H<sup>+</sup> and H<sub>3</sub><sup>+</sup> number densities. Different analysis methods are used by RPWS to provide consistent electron number density values for the whole measured altitude interval. Consistent RPWS electron number density (n<sub>e</sub>) and INMS positively charged ion number density (n<sub>i+</sub>) profiles are derived for altitudes above ~2200 km. Below this altitude the inability of INMS to measure ions above 8 amu at the 34 km/s flyby speed lead us to infer the presence of heavy ions (> 8 amu) and a negatively charged ion component, presumably related to infalling material from the D-ring of Saturn with its associated local ion-molecule-aerosol chemistry. This lower altitude region shows a highly time variable layered structure. The Langmuir probe data in this region are strongly affected by secondaries emitted from the spacecraft and sensor surfaces when traversing a molecule-rich atmosphere at 34 km/s. There are clear signatures of secondary electron and ion emissions from the spacecraft and sensor surfaces in the data. In the Langmuir probe sweep analysis, we correct for the effect of such impact-generated products. This gives corrected total ion number densities that can be compared to the INMS ion number densities and the electron number densities. From this analysis the number of negative ions and/or nm-sized aerosol/dust particles can be constrained. A clear ionospheric peak is not identified, not even at the lowest observed altitude of approximately 1450 km. There are clear latitudinal variations and temporal evolving structures, which we infer are representative of the difference in infalling material from different regions of the D-ring. In addition, there are indications of a strong heating source for the ambient electrons that are well above expected thermal equilibrium levels (up to 4000 K). The cause of this heating is unknown but may be linked to collisional deacceleration of infalling ring material. The observational profiles presented here can be used for ionosphere theory/model comparisons in the future.</div></div>\",\"PeriodicalId\":13199,\"journal\":{\"name\":\"Icarus\",\"volume\":\"441 \",\"pages\":\"Article 116647\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icarus\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019103525001940\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103525001940","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
On the equatorial dayside ionosphere of Saturn – In-situ observations give evidence for a dynamic and layered structure in disequilibrium
The Cassini observations of Saturn's ionosphere during the proximal orbits 288–293 in the altitude range 1450–4000 km (above 1-bar level) are revisited. A thorough re-analysis is made of all 159 available Langmuir probe sweeps of the Radio & Plasma Wave Science (RPWS) measurements. We relate them to the RPWS plasma wave inferred electron number densities and compare them with the available Ion Neutral Mass Spectrometer (INMS) measurements of the H+ and H3+ number densities. Different analysis methods are used by RPWS to provide consistent electron number density values for the whole measured altitude interval. Consistent RPWS electron number density (ne) and INMS positively charged ion number density (ni+) profiles are derived for altitudes above ~2200 km. Below this altitude the inability of INMS to measure ions above 8 amu at the 34 km/s flyby speed lead us to infer the presence of heavy ions (> 8 amu) and a negatively charged ion component, presumably related to infalling material from the D-ring of Saturn with its associated local ion-molecule-aerosol chemistry. This lower altitude region shows a highly time variable layered structure. The Langmuir probe data in this region are strongly affected by secondaries emitted from the spacecraft and sensor surfaces when traversing a molecule-rich atmosphere at 34 km/s. There are clear signatures of secondary electron and ion emissions from the spacecraft and sensor surfaces in the data. In the Langmuir probe sweep analysis, we correct for the effect of such impact-generated products. This gives corrected total ion number densities that can be compared to the INMS ion number densities and the electron number densities. From this analysis the number of negative ions and/or nm-sized aerosol/dust particles can be constrained. A clear ionospheric peak is not identified, not even at the lowest observed altitude of approximately 1450 km. There are clear latitudinal variations and temporal evolving structures, which we infer are representative of the difference in infalling material from different regions of the D-ring. In addition, there are indications of a strong heating source for the ambient electrons that are well above expected thermal equilibrium levels (up to 4000 K). The cause of this heating is unknown but may be linked to collisional deacceleration of infalling ring material. The observational profiles presented here can be used for ionosphere theory/model comparisons in the future.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.