分形梁的自由振动分析

IF 4.4 2区 工程技术 Q1 MECHANICS
Elizabeth Méndez-Márquez , Eduardo Reyes de Luna , David De León , Francisco Javier Carrión-Viramontes , Andriy Kryvko , Didier Samayoa
{"title":"分形梁的自由振动分析","authors":"Elizabeth Méndez-Márquez ,&nbsp;Eduardo Reyes de Luna ,&nbsp;David De León ,&nbsp;Francisco Javier Carrión-Viramontes ,&nbsp;Andriy Kryvko ,&nbsp;Didier Samayoa","doi":"10.1016/j.euromechsol.2025.105719","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a generalized form of motion’s equations for free vibration employing the Balankin’s fractal derivatives (<span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span>-derivatives) in the fractal continuum framework is suggested. Interrelation between <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span> and ordinary derivatives makes possible to transform the vector differential operators in the fractal domain <span><math><msubsup><mrow><mi>ℜ</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> of vector differential calculus into the corresponding fractal continuum <span><math><msubsup><mrow><mi>ℜ</mi></mrow><mrow><mi>ξ</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math></span>, so the fractal free vibration equation for self-similar beams is derived. The solution of the proposed fractal equation is obtained, and several practical examples involving beams with classical boundary conditions are solved to discuss the structural implications.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"114 ","pages":"Article 105719"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free vibration analysis on fractal beams\",\"authors\":\"Elizabeth Méndez-Márquez ,&nbsp;Eduardo Reyes de Luna ,&nbsp;David De León ,&nbsp;Francisco Javier Carrión-Viramontes ,&nbsp;Andriy Kryvko ,&nbsp;Didier Samayoa\",\"doi\":\"10.1016/j.euromechsol.2025.105719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, a generalized form of motion’s equations for free vibration employing the Balankin’s fractal derivatives (<span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span>-derivatives) in the fractal continuum framework is suggested. Interrelation between <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span> and ordinary derivatives makes possible to transform the vector differential operators in the fractal domain <span><math><msubsup><mrow><mi>ℜ</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> of vector differential calculus into the corresponding fractal continuum <span><math><msubsup><mrow><mi>ℜ</mi></mrow><mrow><mi>ξ</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math></span>, so the fractal free vibration equation for self-similar beams is derived. The solution of the proposed fractal equation is obtained, and several practical examples involving beams with classical boundary conditions are solved to discuss the structural implications.</div></div>\",\"PeriodicalId\":50483,\"journal\":{\"name\":\"European Journal of Mechanics A-Solids\",\"volume\":\"114 \",\"pages\":\"Article 105719\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics A-Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997753825001536\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753825001536","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了在分形连续体框架下利用Balankin分形导数(f α-导数)的自由振动运动方程的广义形式。Fα与常导数之间的相互关系使得将向量微分学分形域内的向量微分算子转化为相应的分形连续体(分形连续体)的分形算子成为可能,从而导出了自相似梁的分形自由振动方程。文中给出了分形方程的解,并对具有经典边界条件的梁进行了实例求解,讨论了分形方程的结构意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free vibration analysis on fractal beams
In this work, a generalized form of motion’s equations for free vibration employing the Balankin’s fractal derivatives (Fα-derivatives) in the fractal continuum framework is suggested. Interrelation between Fα and ordinary derivatives makes possible to transform the vector differential operators in the fractal domain x3 of vector differential calculus into the corresponding fractal continuum ξ3, so the fractal free vibration equation for self-similar beams is derived. The solution of the proposed fractal equation is obtained, and several practical examples involving beams with classical boundary conditions are solved to discuss the structural implications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信