Elizabeth Méndez-Márquez , Eduardo Reyes de Luna , David De León , Francisco Javier Carrión-Viramontes , Andriy Kryvko , Didier Samayoa
{"title":"分形梁的自由振动分析","authors":"Elizabeth Méndez-Márquez , Eduardo Reyes de Luna , David De León , Francisco Javier Carrión-Viramontes , Andriy Kryvko , Didier Samayoa","doi":"10.1016/j.euromechsol.2025.105719","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a generalized form of motion’s equations for free vibration employing the Balankin’s fractal derivatives (<span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span>-derivatives) in the fractal continuum framework is suggested. Interrelation between <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span> and ordinary derivatives makes possible to transform the vector differential operators in the fractal domain <span><math><msubsup><mrow><mi>ℜ</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> of vector differential calculus into the corresponding fractal continuum <span><math><msubsup><mrow><mi>ℜ</mi></mrow><mrow><mi>ξ</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math></span>, so the fractal free vibration equation for self-similar beams is derived. The solution of the proposed fractal equation is obtained, and several practical examples involving beams with classical boundary conditions are solved to discuss the structural implications.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"114 ","pages":"Article 105719"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free vibration analysis on fractal beams\",\"authors\":\"Elizabeth Méndez-Márquez , Eduardo Reyes de Luna , David De León , Francisco Javier Carrión-Viramontes , Andriy Kryvko , Didier Samayoa\",\"doi\":\"10.1016/j.euromechsol.2025.105719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, a generalized form of motion’s equations for free vibration employing the Balankin’s fractal derivatives (<span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span>-derivatives) in the fractal continuum framework is suggested. Interrelation between <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span> and ordinary derivatives makes possible to transform the vector differential operators in the fractal domain <span><math><msubsup><mrow><mi>ℜ</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> of vector differential calculus into the corresponding fractal continuum <span><math><msubsup><mrow><mi>ℜ</mi></mrow><mrow><mi>ξ</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math></span>, so the fractal free vibration equation for self-similar beams is derived. The solution of the proposed fractal equation is obtained, and several practical examples involving beams with classical boundary conditions are solved to discuss the structural implications.</div></div>\",\"PeriodicalId\":50483,\"journal\":{\"name\":\"European Journal of Mechanics A-Solids\",\"volume\":\"114 \",\"pages\":\"Article 105719\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics A-Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997753825001536\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753825001536","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
In this work, a generalized form of motion’s equations for free vibration employing the Balankin’s fractal derivatives (-derivatives) in the fractal continuum framework is suggested. Interrelation between and ordinary derivatives makes possible to transform the vector differential operators in the fractal domain of vector differential calculus into the corresponding fractal continuum , so the fractal free vibration equation for self-similar beams is derived. The solution of the proposed fractal equation is obtained, and several practical examples involving beams with classical boundary conditions are solved to discuss the structural implications.
期刊介绍:
The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.