Co/Co3O4嵌入n掺杂碳网络的铁磁自组装异质结构在中等磁场下具有出色的储能性能

IF 14.2 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Sandya Rani Mangishetti , Gwan Hyeon Park , Junbeom Maeng , Tanwir Ansari , Jungseub Ha , Sanghwa Jeong , Sehun Choi , Yeji Park , Nayeon Kim , Won Bae Kim
{"title":"Co/Co3O4嵌入n掺杂碳网络的铁磁自组装异质结构在中等磁场下具有出色的储能性能","authors":"Sandya Rani Mangishetti ,&nbsp;Gwan Hyeon Park ,&nbsp;Junbeom Maeng ,&nbsp;Tanwir Ansari ,&nbsp;Jungseub Ha ,&nbsp;Sanghwa Jeong ,&nbsp;Sehun Choi ,&nbsp;Yeji Park ,&nbsp;Nayeon Kim ,&nbsp;Won Bae Kim","doi":"10.1016/j.compositesb.2025.112705","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to create an efficient anode hybrid electrode material for the assembly of asymmetric supercapacitor (ASC) and to further enhance electrochemical performance under moderate external magnetic fields (MFs), addressing the challenges of low energy density in supercapacitor devices while maintaining cycle life and power density. The well-integrated hybrid heterostructures, which embed Co/Co<sub>3</sub>O<sub>4</sub> nanoparticles in nitrogen (N)-doped carbon shells and sheets (Co@N–CNS), demonstrate exceptional physical and electrochemical properties. At a current density of 1.5 A g<sup>−1</sup>, it exhibits a specific capacitance of 1579.8 F g<sup>−1</sup> in a half-cell configuration. Furthermore, the gravimetric capacitance increases to 2429 F g<sup>−1</sup> under a MF of 6 mT. The enhanced energy storage performance is attributed to the reduced charge transfer resistance (R<sub>ct</sub>) and solution resistance (R<sub>s</sub>) resulting from magnetoresistance and magnetic hydrodynamics (MHD) effects. The asymmetric supercapacitor exhibits an outstanding energy density of 221.4 W h kg<sup>−1</sup> and power density of 1.58 kW kg<sup>−1</sup> at 1.5 A g<sup>−1</sup> under a 6 mT MF strengths. It also demonstrates excellent cycling stability (96.2 %) after 10,000 cycles under the same field strength. These results outperform most cobalt-based hybrid electrode materials reported to date. This is the first investigation on a ferromagnetic hybrid electrode material for supercapacitors that demonstrates superior electrochemical performance under both zero and moderate MFs.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"305 ","pages":"Article 112705"},"PeriodicalIF":14.2000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferromagnetic self-assembled heterostructures of Co/Co3O4 embedded N-doped carbon network for outstanding energy storage performance under moderate magnetic fields\",\"authors\":\"Sandya Rani Mangishetti ,&nbsp;Gwan Hyeon Park ,&nbsp;Junbeom Maeng ,&nbsp;Tanwir Ansari ,&nbsp;Jungseub Ha ,&nbsp;Sanghwa Jeong ,&nbsp;Sehun Choi ,&nbsp;Yeji Park ,&nbsp;Nayeon Kim ,&nbsp;Won Bae Kim\",\"doi\":\"10.1016/j.compositesb.2025.112705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aims to create an efficient anode hybrid electrode material for the assembly of asymmetric supercapacitor (ASC) and to further enhance electrochemical performance under moderate external magnetic fields (MFs), addressing the challenges of low energy density in supercapacitor devices while maintaining cycle life and power density. The well-integrated hybrid heterostructures, which embed Co/Co<sub>3</sub>O<sub>4</sub> nanoparticles in nitrogen (N)-doped carbon shells and sheets (Co@N–CNS), demonstrate exceptional physical and electrochemical properties. At a current density of 1.5 A g<sup>−1</sup>, it exhibits a specific capacitance of 1579.8 F g<sup>−1</sup> in a half-cell configuration. Furthermore, the gravimetric capacitance increases to 2429 F g<sup>−1</sup> under a MF of 6 mT. The enhanced energy storage performance is attributed to the reduced charge transfer resistance (R<sub>ct</sub>) and solution resistance (R<sub>s</sub>) resulting from magnetoresistance and magnetic hydrodynamics (MHD) effects. The asymmetric supercapacitor exhibits an outstanding energy density of 221.4 W h kg<sup>−1</sup> and power density of 1.58 kW kg<sup>−1</sup> at 1.5 A g<sup>−1</sup> under a 6 mT MF strengths. It also demonstrates excellent cycling stability (96.2 %) after 10,000 cycles under the same field strength. These results outperform most cobalt-based hybrid electrode materials reported to date. This is the first investigation on a ferromagnetic hybrid electrode material for supercapacitors that demonstrates superior electrochemical performance under both zero and moderate MFs.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"305 \",\"pages\":\"Article 112705\"},\"PeriodicalIF\":14.2000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836825006067\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825006067","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在为非对称超级电容器(ASC)的组装创造一种高效的阳极混合电极材料,并进一步提高中等外部磁场(MFs)下的电化学性能,解决超级电容器器件低能量密度的挑战,同时保持循环寿命和功率密度。将Co/Co3O4纳米颗粒嵌入氮掺杂碳壳和碳片(Co@N -CNS)中的杂化异质结构表现出优异的物理和电化学性能。在电流密度为1.5 a g−1时,半电池结构的比电容为1579.8 F g−1。此外,在6 mT的MF下,重量电容增加到2429 F g−1。由于磁阻和磁流体动力学(MHD)效应,电荷转移电阻(Rct)和溶液电阻(Rs)降低,储能性能得到增强。该非对称超级电容器在6 mT MF强度下,在1.5 A g−1条件下具有221.4 W h kg−1的能量密度和1.58 kW kg−1的功率密度。在相同场强下,经过10000次循环后,其循环稳定性达到96.2%。这些结果优于迄今为止报道的大多数钴基杂化电极材料。这是对超级电容器的铁磁混合电极材料的首次研究,该材料在零和中等MFs下都表现出优异的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ferromagnetic self-assembled heterostructures of Co/Co3O4 embedded N-doped carbon network for outstanding energy storage performance under moderate magnetic fields

Ferromagnetic self-assembled heterostructures of Co/Co3O4 embedded N-doped carbon network for outstanding energy storage performance under moderate magnetic fields
This study aims to create an efficient anode hybrid electrode material for the assembly of asymmetric supercapacitor (ASC) and to further enhance electrochemical performance under moderate external magnetic fields (MFs), addressing the challenges of low energy density in supercapacitor devices while maintaining cycle life and power density. The well-integrated hybrid heterostructures, which embed Co/Co3O4 nanoparticles in nitrogen (N)-doped carbon shells and sheets (Co@N–CNS), demonstrate exceptional physical and electrochemical properties. At a current density of 1.5 A g−1, it exhibits a specific capacitance of 1579.8 F g−1 in a half-cell configuration. Furthermore, the gravimetric capacitance increases to 2429 F g−1 under a MF of 6 mT. The enhanced energy storage performance is attributed to the reduced charge transfer resistance (Rct) and solution resistance (Rs) resulting from magnetoresistance and magnetic hydrodynamics (MHD) effects. The asymmetric supercapacitor exhibits an outstanding energy density of 221.4 W h kg−1 and power density of 1.58 kW kg−1 at 1.5 A g−1 under a 6 mT MF strengths. It also demonstrates excellent cycling stability (96.2 %) after 10,000 cycles under the same field strength. These results outperform most cobalt-based hybrid electrode materials reported to date. This is the first investigation on a ferromagnetic hybrid electrode material for supercapacitors that demonstrates superior electrochemical performance under both zero and moderate MFs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信