Weihong Zeng, Xinrui Ding, Yuan Jin, Bin Liu, Runhao Zeng, Feng Gong, Yan Lou, Lelun Jiang, Hui Li
{"title":"具有同步运动和传感能力的磁性软微机器人","authors":"Weihong Zeng, Xinrui Ding, Yuan Jin, Bin Liu, Runhao Zeng, Feng Gong, Yan Lou, Lelun Jiang, Hui Li","doi":"10.1038/s41528-025-00437-0","DOIUrl":null,"url":null,"abstract":"<p>Soft millirobot has attracted significant attention and demonstrated tremendous potential in human-robot interactions and safety inspections. Locomotion and perception are two crucial features for achieving effective gait and practical applications of robots. Inspired by nature, this research reports a magnetic soft millirobot that integrates locomotion and sensing capacities simultaneously. Microconical matrix with rich and regular surface morphologies are constructed directly inside the millirobot as both multilegged and triboelectric-enhanced sensing structures via cooperation of jet printing and magnetization-induction method with high-speed and high-precision. The robot can both recognize its current body state across various application scenarios and identify terrains through a machine learning strategy. Our work presents a customizable approach for smart millirobots to perform tasks in nonmagnetic structured environments and provides embedded sensing capability for next-generation soft robots.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"6 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic soft millirobot with simultaneous locomotion and sensing capability\",\"authors\":\"Weihong Zeng, Xinrui Ding, Yuan Jin, Bin Liu, Runhao Zeng, Feng Gong, Yan Lou, Lelun Jiang, Hui Li\",\"doi\":\"10.1038/s41528-025-00437-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Soft millirobot has attracted significant attention and demonstrated tremendous potential in human-robot interactions and safety inspections. Locomotion and perception are two crucial features for achieving effective gait and practical applications of robots. Inspired by nature, this research reports a magnetic soft millirobot that integrates locomotion and sensing capacities simultaneously. Microconical matrix with rich and regular surface morphologies are constructed directly inside the millirobot as both multilegged and triboelectric-enhanced sensing structures via cooperation of jet printing and magnetization-induction method with high-speed and high-precision. The robot can both recognize its current body state across various application scenarios and identify terrains through a machine learning strategy. Our work presents a customizable approach for smart millirobots to perform tasks in nonmagnetic structured environments and provides embedded sensing capability for next-generation soft robots.</p>\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41528-025-00437-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00437-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Magnetic soft millirobot with simultaneous locomotion and sensing capability
Soft millirobot has attracted significant attention and demonstrated tremendous potential in human-robot interactions and safety inspections. Locomotion and perception are two crucial features for achieving effective gait and practical applications of robots. Inspired by nature, this research reports a magnetic soft millirobot that integrates locomotion and sensing capacities simultaneously. Microconical matrix with rich and regular surface morphologies are constructed directly inside the millirobot as both multilegged and triboelectric-enhanced sensing structures via cooperation of jet printing and magnetization-induction method with high-speed and high-precision. The robot can both recognize its current body state across various application scenarios and identify terrains through a machine learning strategy. Our work presents a customizable approach for smart millirobots to perform tasks in nonmagnetic structured environments and provides embedded sensing capability for next-generation soft robots.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.