{"title":"间歇式供热控制策略系统对温室热环境的影响研究","authors":"Mingzhi Zhao, Yingjie Liu, Zheng Han, Chun Chang, Daorina Bao, Rasakhodzhaev Bakhramzhan Sabirovich, Akhadou Jobir","doi":"10.1016/j.csite.2025.106451","DOIUrl":null,"url":null,"abstract":"The heating imbalance in solar-powered heating greenhouses (SHG) severely constrains both energy supply efficiency and crop yield. This study proposes the principle of Thermal Intermittent Heating (TIH), unveiling the differentiated regulatory mechanisms by which the duty cycle (<mml:math altimg=\"si1.svg\"><mml:mrow><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∅</mml:mo></mml:mrow></mml:math>) governs thermal dynamics in both aerial greenhouse environments and subsurface soil layers. Under the greenhouse thermal environment conditions, the operational mode with <mml:math altimg=\"si1.svg\"><mml:mrow><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∅</mml:mo></mml:mrow></mml:math> = 0.67 (control scheme (2,1)) demonstrates optimal thermal stratification adaptation through an 8-h heating/4-h intermittent cycle. This configuration achieved the highest Comprehensive Energy Energy Efficiency Index (COP) of 88.7 % in the fourth layer (group maximum), along with minimal thermal fluctuations indicated by <mml:math altimg=\"si2.svg\"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:math> (2.82 °C) and <mml:math altimg=\"si3.svg\"><mml:mrow><mml:msub><mml:mi>C</mml:mi><mml:mi>V</mml:mi></mml:msub></mml:mrow></mml:math> (11.12 %). The strategy effectively compensates for thermal dissipation in upper zones caused by buoyant airflow (48 % elevation in mean temperature), while preventing excessive top-layer overheating observed in continuous heating (<mml:math altimg=\"si1.svg\"><mml:mrow><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∅</mml:mo></mml:mrow></mml:math> = 1) scenarios, which exhibited 128 % surge in <mml:math altimg=\"si2.svg\"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:math>. Within the soil layer (0.1–0.2m depth), this <mml:math altimg=\"si1.svg\"><mml:mrow><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∅</mml:mo></mml:mrow></mml:math> value synchronously optimizes thermal penetration intensity and stability: The first-layer COP reached 182.39 (<mml:math altimg=\"si4.svg\"><mml:mrow><mml:mover accent=\"true\"><mml:mi>T</mml:mi><mml:mo>‾</mml:mo></mml:mover></mml:mrow></mml:math> = 19.72 °C) with <mml:math altimg=\"si2.svg\"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:math> merely 1.85 °C, where heating duration precisely matched the soil's thermal diffusion period (6–8 h). Whereas <mml:math altimg=\"si1.svg\"><mml:mrow><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∅</mml:mo></mml:mrow></mml:math> = 1 induced 197 % surge in soil <mml:math altimg=\"si2.svg\"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:math> (5.51 °C vs. optimal condition), and <mml:math altimg=\"si1.svg\"><mml:mrow><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∅</mml:mo></mml:mrow></mml:math> = 0.13 resulted in 22.6 % reduction in deep-layer temperature mean. The study demonstrates COP's capacity to quantify heterogeneous thermal responses across media, revealing that moderate <mml:math altimg=\"si1.svg\"><mml:mrow><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∅</mml:mo></mml:mrow></mml:math> = 0.67 regulates thermal inertia to achieve multi-objective synergy in \"energy consumption-uniformity-thermal penetration\". This establishes a thermodynamic analysis framework for hierarchical heating system optimization.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"51 1","pages":"106451"},"PeriodicalIF":6.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the impact of intermittent heating control strategy system on greenhouse thermal environment\",\"authors\":\"Mingzhi Zhao, Yingjie Liu, Zheng Han, Chun Chang, Daorina Bao, Rasakhodzhaev Bakhramzhan Sabirovich, Akhadou Jobir\",\"doi\":\"10.1016/j.csite.2025.106451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heating imbalance in solar-powered heating greenhouses (SHG) severely constrains both energy supply efficiency and crop yield. This study proposes the principle of Thermal Intermittent Heating (TIH), unveiling the differentiated regulatory mechanisms by which the duty cycle (<mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">∅</mml:mo></mml:mrow></mml:math>) governs thermal dynamics in both aerial greenhouse environments and subsurface soil layers. Under the greenhouse thermal environment conditions, the operational mode with <mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">∅</mml:mo></mml:mrow></mml:math> = 0.67 (control scheme (2,1)) demonstrates optimal thermal stratification adaptation through an 8-h heating/4-h intermittent cycle. This configuration achieved the highest Comprehensive Energy Energy Efficiency Index (COP) of 88.7 % in the fourth layer (group maximum), along with minimal thermal fluctuations indicated by <mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:math> (2.82 °C) and <mml:math altimg=\\\"si3.svg\\\"><mml:mrow><mml:msub><mml:mi>C</mml:mi><mml:mi>V</mml:mi></mml:msub></mml:mrow></mml:math> (11.12 %). The strategy effectively compensates for thermal dissipation in upper zones caused by buoyant airflow (48 % elevation in mean temperature), while preventing excessive top-layer overheating observed in continuous heating (<mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">∅</mml:mo></mml:mrow></mml:math> = 1) scenarios, which exhibited 128 % surge in <mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:math>. Within the soil layer (0.1–0.2m depth), this <mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">∅</mml:mo></mml:mrow></mml:math> value synchronously optimizes thermal penetration intensity and stability: The first-layer COP reached 182.39 (<mml:math altimg=\\\"si4.svg\\\"><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mi>T</mml:mi><mml:mo>‾</mml:mo></mml:mover></mml:mrow></mml:math> = 19.72 °C) with <mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:math> merely 1.85 °C, where heating duration precisely matched the soil's thermal diffusion period (6–8 h). Whereas <mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">∅</mml:mo></mml:mrow></mml:math> = 1 induced 197 % surge in soil <mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:math> (5.51 °C vs. optimal condition), and <mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">∅</mml:mo></mml:mrow></mml:math> = 0.13 resulted in 22.6 % reduction in deep-layer temperature mean. The study demonstrates COP's capacity to quantify heterogeneous thermal responses across media, revealing that moderate <mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">∅</mml:mo></mml:mrow></mml:math> = 0.67 regulates thermal inertia to achieve multi-objective synergy in \\\"energy consumption-uniformity-thermal penetration\\\". This establishes a thermodynamic analysis framework for hierarchical heating system optimization.\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"51 1\",\"pages\":\"106451\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csite.2025.106451\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2025.106451","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Study on the impact of intermittent heating control strategy system on greenhouse thermal environment
The heating imbalance in solar-powered heating greenhouses (SHG) severely constrains both energy supply efficiency and crop yield. This study proposes the principle of Thermal Intermittent Heating (TIH), unveiling the differentiated regulatory mechanisms by which the duty cycle (∅) governs thermal dynamics in both aerial greenhouse environments and subsurface soil layers. Under the greenhouse thermal environment conditions, the operational mode with ∅ = 0.67 (control scheme (2,1)) demonstrates optimal thermal stratification adaptation through an 8-h heating/4-h intermittent cycle. This configuration achieved the highest Comprehensive Energy Energy Efficiency Index (COP) of 88.7 % in the fourth layer (group maximum), along with minimal thermal fluctuations indicated by σT (2.82 °C) and CV (11.12 %). The strategy effectively compensates for thermal dissipation in upper zones caused by buoyant airflow (48 % elevation in mean temperature), while preventing excessive top-layer overheating observed in continuous heating (∅ = 1) scenarios, which exhibited 128 % surge in σT. Within the soil layer (0.1–0.2m depth), this ∅ value synchronously optimizes thermal penetration intensity and stability: The first-layer COP reached 182.39 (T‾ = 19.72 °C) with σT merely 1.85 °C, where heating duration precisely matched the soil's thermal diffusion period (6–8 h). Whereas ∅ = 1 induced 197 % surge in soil σT (5.51 °C vs. optimal condition), and ∅ = 0.13 resulted in 22.6 % reduction in deep-layer temperature mean. The study demonstrates COP's capacity to quantify heterogeneous thermal responses across media, revealing that moderate ∅ = 0.67 regulates thermal inertia to achieve multi-objective synergy in "energy consumption-uniformity-thermal penetration". This establishes a thermodynamic analysis framework for hierarchical heating system optimization.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.