间歇式供热控制策略系统对温室热环境的影响研究

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Mingzhi Zhao, Yingjie Liu, Zheng Han, Chun Chang, Daorina Bao, Rasakhodzhaev Bakhramzhan Sabirovich, Akhadou Jobir
{"title":"间歇式供热控制策略系统对温室热环境的影响研究","authors":"Mingzhi Zhao, Yingjie Liu, Zheng Han, Chun Chang, Daorina Bao, Rasakhodzhaev Bakhramzhan Sabirovich, Akhadou Jobir","doi":"10.1016/j.csite.2025.106451","DOIUrl":null,"url":null,"abstract":"The heating imbalance in solar-powered heating greenhouses (SHG) severely constrains both energy supply efficiency and crop yield. This study proposes the principle of Thermal Intermittent Heating (TIH), unveiling the differentiated regulatory mechanisms by which the duty cycle (<mml:math altimg=\"si1.svg\"><mml:mrow><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∅</mml:mo></mml:mrow></mml:math>) governs thermal dynamics in both aerial greenhouse environments and subsurface soil layers. Under the greenhouse thermal environment conditions, the operational mode with <mml:math altimg=\"si1.svg\"><mml:mrow><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∅</mml:mo></mml:mrow></mml:math> = 0.67 (control scheme (2,1)) demonstrates optimal thermal stratification adaptation through an 8-h heating/4-h intermittent cycle. This configuration achieved the highest Comprehensive Energy Energy Efficiency Index (COP) of 88.7 % in the fourth layer (group maximum), along with minimal thermal fluctuations indicated by <mml:math altimg=\"si2.svg\"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:math> (2.82 °C) and <mml:math altimg=\"si3.svg\"><mml:mrow><mml:msub><mml:mi>C</mml:mi><mml:mi>V</mml:mi></mml:msub></mml:mrow></mml:math> (11.12 %). The strategy effectively compensates for thermal dissipation in upper zones caused by buoyant airflow (48 % elevation in mean temperature), while preventing excessive top-layer overheating observed in continuous heating (<mml:math altimg=\"si1.svg\"><mml:mrow><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∅</mml:mo></mml:mrow></mml:math> = 1) scenarios, which exhibited 128 % surge in <mml:math altimg=\"si2.svg\"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:math>. Within the soil layer (0.1–0.2m depth), this <mml:math altimg=\"si1.svg\"><mml:mrow><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∅</mml:mo></mml:mrow></mml:math> value synchronously optimizes thermal penetration intensity and stability: The first-layer COP reached 182.39 (<mml:math altimg=\"si4.svg\"><mml:mrow><mml:mover accent=\"true\"><mml:mi>T</mml:mi><mml:mo>‾</mml:mo></mml:mover></mml:mrow></mml:math> = 19.72 °C) with <mml:math altimg=\"si2.svg\"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:math> merely 1.85 °C, where heating duration precisely matched the soil's thermal diffusion period (6–8 h). Whereas <mml:math altimg=\"si1.svg\"><mml:mrow><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∅</mml:mo></mml:mrow></mml:math> = 1 induced 197 % surge in soil <mml:math altimg=\"si2.svg\"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:math> (5.51 °C vs. optimal condition), and <mml:math altimg=\"si1.svg\"><mml:mrow><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∅</mml:mo></mml:mrow></mml:math> = 0.13 resulted in 22.6 % reduction in deep-layer temperature mean. The study demonstrates COP's capacity to quantify heterogeneous thermal responses across media, revealing that moderate <mml:math altimg=\"si1.svg\"><mml:mrow><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∅</mml:mo></mml:mrow></mml:math> = 0.67 regulates thermal inertia to achieve multi-objective synergy in \"energy consumption-uniformity-thermal penetration\". This establishes a thermodynamic analysis framework for hierarchical heating system optimization.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"51 1","pages":"106451"},"PeriodicalIF":6.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the impact of intermittent heating control strategy system on greenhouse thermal environment\",\"authors\":\"Mingzhi Zhao, Yingjie Liu, Zheng Han, Chun Chang, Daorina Bao, Rasakhodzhaev Bakhramzhan Sabirovich, Akhadou Jobir\",\"doi\":\"10.1016/j.csite.2025.106451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heating imbalance in solar-powered heating greenhouses (SHG) severely constrains both energy supply efficiency and crop yield. This study proposes the principle of Thermal Intermittent Heating (TIH), unveiling the differentiated regulatory mechanisms by which the duty cycle (<mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">∅</mml:mo></mml:mrow></mml:math>) governs thermal dynamics in both aerial greenhouse environments and subsurface soil layers. Under the greenhouse thermal environment conditions, the operational mode with <mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">∅</mml:mo></mml:mrow></mml:math> = 0.67 (control scheme (2,1)) demonstrates optimal thermal stratification adaptation through an 8-h heating/4-h intermittent cycle. This configuration achieved the highest Comprehensive Energy Energy Efficiency Index (COP) of 88.7 % in the fourth layer (group maximum), along with minimal thermal fluctuations indicated by <mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:math> (2.82 °C) and <mml:math altimg=\\\"si3.svg\\\"><mml:mrow><mml:msub><mml:mi>C</mml:mi><mml:mi>V</mml:mi></mml:msub></mml:mrow></mml:math> (11.12 %). The strategy effectively compensates for thermal dissipation in upper zones caused by buoyant airflow (48 % elevation in mean temperature), while preventing excessive top-layer overheating observed in continuous heating (<mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">∅</mml:mo></mml:mrow></mml:math> = 1) scenarios, which exhibited 128 % surge in <mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:math>. Within the soil layer (0.1–0.2m depth), this <mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">∅</mml:mo></mml:mrow></mml:math> value synchronously optimizes thermal penetration intensity and stability: The first-layer COP reached 182.39 (<mml:math altimg=\\\"si4.svg\\\"><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mi>T</mml:mi><mml:mo>‾</mml:mo></mml:mover></mml:mrow></mml:math> = 19.72 °C) with <mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:math> merely 1.85 °C, where heating duration precisely matched the soil's thermal diffusion period (6–8 h). Whereas <mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">∅</mml:mo></mml:mrow></mml:math> = 1 induced 197 % surge in soil <mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msub><mml:mi>σ</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:math> (5.51 °C vs. optimal condition), and <mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">∅</mml:mo></mml:mrow></mml:math> = 0.13 resulted in 22.6 % reduction in deep-layer temperature mean. The study demonstrates COP's capacity to quantify heterogeneous thermal responses across media, revealing that moderate <mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">∅</mml:mo></mml:mrow></mml:math> = 0.67 regulates thermal inertia to achieve multi-objective synergy in \\\"energy consumption-uniformity-thermal penetration\\\". This establishes a thermodynamic analysis framework for hierarchical heating system optimization.\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"51 1\",\"pages\":\"106451\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csite.2025.106451\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2025.106451","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

太阳能大棚供热不平衡严重制约了能源供给效率和作物产量。本研究提出了热间歇加热(TIH)原理,揭示了架空温室环境和地下土层中占空比(∅)支配热动力学的差异化调节机制。在温室热环境条件下,采用φ = 0.67的运行模式(控制方案(2,1)),通过8 h加热/4 h间歇循环来适应最优热分层。该结构在第四层(组最大值)的综合能源效率指数(COP)最高,达到88.7%,同时σT(2.82°C)和CV(11.12%)的热波动最小。该策略有效补偿了上层浮力气流(平均温度升高48%)引起的热耗散,同时防止了连续加热(∅= 1)情况下顶层过度过热,σT激增128%。在土层内(0.1-0.2m深度),该∅值同步优化了热渗透强度和稳定性:第一层COP达到182.39 (T = 19.72℃),σT仅为1.85℃,加热时间正好与土壤的热扩散周期(6-8 h)相匹配。∅= 1导致土壤σT(5.51℃vs最优条件)激增197%,∅= 0.13导致深层平均温度下降22.6%。研究表明COP具有跨介质非均质热反应的量化能力,适度∅= 0.67调节热惯性,实现“能耗-均匀性-热渗透”的多目标协同。建立了分层供热系统优化的热力学分析框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the impact of intermittent heating control strategy system on greenhouse thermal environment
The heating imbalance in solar-powered heating greenhouses (SHG) severely constrains both energy supply efficiency and crop yield. This study proposes the principle of Thermal Intermittent Heating (TIH), unveiling the differentiated regulatory mechanisms by which the duty cycle () governs thermal dynamics in both aerial greenhouse environments and subsurface soil layers. Under the greenhouse thermal environment conditions, the operational mode with  = 0.67 (control scheme (2,1)) demonstrates optimal thermal stratification adaptation through an 8-h heating/4-h intermittent cycle. This configuration achieved the highest Comprehensive Energy Energy Efficiency Index (COP) of 88.7 % in the fourth layer (group maximum), along with minimal thermal fluctuations indicated by σT (2.82 °C) and CV (11.12 %). The strategy effectively compensates for thermal dissipation in upper zones caused by buoyant airflow (48 % elevation in mean temperature), while preventing excessive top-layer overheating observed in continuous heating ( = 1) scenarios, which exhibited 128 % surge in σT. Within the soil layer (0.1–0.2m depth), this value synchronously optimizes thermal penetration intensity and stability: The first-layer COP reached 182.39 (T = 19.72 °C) with σT merely 1.85 °C, where heating duration precisely matched the soil's thermal diffusion period (6–8 h). Whereas  = 1 induced 197 % surge in soil σT (5.51 °C vs. optimal condition), and  = 0.13 resulted in 22.6 % reduction in deep-layer temperature mean. The study demonstrates COP's capacity to quantify heterogeneous thermal responses across media, revealing that moderate  = 0.67 regulates thermal inertia to achieve multi-objective synergy in "energy consumption-uniformity-thermal penetration". This establishes a thermodynamic analysis framework for hierarchical heating system optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信