Bokyung Kim, Qijia Huang, Brady Taylor, Qilin Zheng, Jonathan Ku, Yiran Chen, Hai Li
{"title":"MulPi:一种多类别、独立于患者的癫痫发作分类器,在sram中协同设计输入静止计算。","authors":"Bokyung Kim, Qijia Huang, Brady Taylor, Qilin Zheng, Jonathan Ku, Yiran Chen, Hai Li","doi":"10.1109/TBCAS.2025.3579273","DOIUrl":null,"url":null,"abstract":"<p><p>Unprovoked seizures have threatened epilepsy patients over 70 million. Automated classification to detect and predict seizures could bring seizure-free lives to epilepsy patients, delivering them from fatal danger and increasing the quality of life. Authentic detection and prediction of seizures require 1) multi-class (Mul) and 2) patient-independent (Pi) classification. Recent implementable chips for seizure classification rarely satisfy the two requirements due to restricted resources in small chips; therefore, high efficiency is imperative along with accuracy. This paper introduces an efficient MulPi chip, fabricated for the first time to simultaneously fulfill multi-class and patient independence, based on a co-design approach. We develop a 5-layer convolutional neural network (CNN), MulPiCNN, with advanced training techniques for lightness and accuracy. At the hardware level, our SRAM-based chip leverages computing-in-memory (CIM) for efficiency. The fabricated MulPi chip is distinguished from prior CIMs in two folds, namely ISRW-CIM: a) input-stationary (IS) CIM for resource-saving, and b) row-wise (RW) computing to address a challenge of SRAM CIM, empowered by our novel 2T-Hadamard product unit (HPU). MulPi outperforms state-of-the-art chips with 98.5% sensitivity and 99.2% specificity, classifying in 0.12s and 0.348mm${}^{2}$.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":"756-766"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MulPi: A Multi-class and Patient-Independent Epileptic Seizure Classifier With Co-Designed Input-stationary Computing-in-SRAM.\",\"authors\":\"Bokyung Kim, Qijia Huang, Brady Taylor, Qilin Zheng, Jonathan Ku, Yiran Chen, Hai Li\",\"doi\":\"10.1109/TBCAS.2025.3579273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unprovoked seizures have threatened epilepsy patients over 70 million. Automated classification to detect and predict seizures could bring seizure-free lives to epilepsy patients, delivering them from fatal danger and increasing the quality of life. Authentic detection and prediction of seizures require 1) multi-class (Mul) and 2) patient-independent (Pi) classification. Recent implementable chips for seizure classification rarely satisfy the two requirements due to restricted resources in small chips; therefore, high efficiency is imperative along with accuracy. This paper introduces an efficient MulPi chip, fabricated for the first time to simultaneously fulfill multi-class and patient independence, based on a co-design approach. We develop a 5-layer convolutional neural network (CNN), MulPiCNN, with advanced training techniques for lightness and accuracy. At the hardware level, our SRAM-based chip leverages computing-in-memory (CIM) for efficiency. The fabricated MulPi chip is distinguished from prior CIMs in two folds, namely ISRW-CIM: a) input-stationary (IS) CIM for resource-saving, and b) row-wise (RW) computing to address a challenge of SRAM CIM, empowered by our novel 2T-Hadamard product unit (HPU). MulPi outperforms state-of-the-art chips with 98.5% sensitivity and 99.2% specificity, classifying in 0.12s and 0.348mm${}^{2}$.</p>\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"PP \",\"pages\":\"756-766\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2025.3579273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2025.3579273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MulPi: A Multi-class and Patient-Independent Epileptic Seizure Classifier With Co-Designed Input-stationary Computing-in-SRAM.
Unprovoked seizures have threatened epilepsy patients over 70 million. Automated classification to detect and predict seizures could bring seizure-free lives to epilepsy patients, delivering them from fatal danger and increasing the quality of life. Authentic detection and prediction of seizures require 1) multi-class (Mul) and 2) patient-independent (Pi) classification. Recent implementable chips for seizure classification rarely satisfy the two requirements due to restricted resources in small chips; therefore, high efficiency is imperative along with accuracy. This paper introduces an efficient MulPi chip, fabricated for the first time to simultaneously fulfill multi-class and patient independence, based on a co-design approach. We develop a 5-layer convolutional neural network (CNN), MulPiCNN, with advanced training techniques for lightness and accuracy. At the hardware level, our SRAM-based chip leverages computing-in-memory (CIM) for efficiency. The fabricated MulPi chip is distinguished from prior CIMs in two folds, namely ISRW-CIM: a) input-stationary (IS) CIM for resource-saving, and b) row-wise (RW) computing to address a challenge of SRAM CIM, empowered by our novel 2T-Hadamard product unit (HPU). MulPi outperforms state-of-the-art chips with 98.5% sensitivity and 99.2% specificity, classifying in 0.12s and 0.348mm${}^{2}$.