皮肤病学OCT:一个确定人工智能模型构建是否需要完全多样化数据集的过程。

IF 3.1 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-06-15 DOI:10.1364/OL.563493
Qiuyun Xu, Amanda P Siegel, Josee M D Smith, Joseph W Fakhoury, Maria Tsoukas, Hayden Smith, Chiu-Lan Chen, Steven Daveluy, Darius Mehregan, Julia Welzel, Eric R Tkaczyk, Kamran Avanaki
{"title":"皮肤病学OCT:一个确定人工智能模型构建是否需要完全多样化数据集的过程。","authors":"Qiuyun Xu, Amanda P Siegel, Josee M D Smith, Joseph W Fakhoury, Maria Tsoukas, Hayden Smith, Chiu-Lan Chen, Steven Daveluy, Darius Mehregan, Julia Welzel, Eric R Tkaczyk, Kamran Avanaki","doi":"10.1364/OL.563493","DOIUrl":null,"url":null,"abstract":"<p><p>Optical coherence tomography (OCT) has sufficient depth penetration for detection of skin pathologies, but its detection effectiveness can be aided by the assistance of artificial intelligence (AI) modeling. AI model-building identifies pathologies by comparing images from healthy and diseased tissues, but healthy skin can present as quite variable across skin types and ages. Here, we selected a commonly used parameter for skin analysis and attenuation coefficient and analyzed how it varied in the dermis and epidermis, and in skin-exposed and skin-protected regions, for 100 subjects from a wide range of skin types (Fitzpatrick types I-V) and ages (13-83). For the statistical analysis, we report whether comparisons of the dermis and epidermis and sun-exposed and sun-protected areas across age and skin type are statistically significant, indeterminate, or not statistically significant and present 95% confidence intervals for this parameter as it ranges across different ages and skin types. This process of pre-analyzing features using healthy images provides a roadmap for how to ease the recruitment process while acquiring a sufficient range of images for effective AI model-building. We expect this type of analysis can have the effect of accelerating translation of AI-based OCT image analysis to the clinic.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 12","pages":"3947-3949"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OCT in dermatology: a process for determining whether a fully diversified dataset is needed for AI model-building.\",\"authors\":\"Qiuyun Xu, Amanda P Siegel, Josee M D Smith, Joseph W Fakhoury, Maria Tsoukas, Hayden Smith, Chiu-Lan Chen, Steven Daveluy, Darius Mehregan, Julia Welzel, Eric R Tkaczyk, Kamran Avanaki\",\"doi\":\"10.1364/OL.563493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optical coherence tomography (OCT) has sufficient depth penetration for detection of skin pathologies, but its detection effectiveness can be aided by the assistance of artificial intelligence (AI) modeling. AI model-building identifies pathologies by comparing images from healthy and diseased tissues, but healthy skin can present as quite variable across skin types and ages. Here, we selected a commonly used parameter for skin analysis and attenuation coefficient and analyzed how it varied in the dermis and epidermis, and in skin-exposed and skin-protected regions, for 100 subjects from a wide range of skin types (Fitzpatrick types I-V) and ages (13-83). For the statistical analysis, we report whether comparisons of the dermis and epidermis and sun-exposed and sun-protected areas across age and skin type are statistically significant, indeterminate, or not statistically significant and present 95% confidence intervals for this parameter as it ranges across different ages and skin types. This process of pre-analyzing features using healthy images provides a roadmap for how to ease the recruitment process while acquiring a sufficient range of images for effective AI model-building. We expect this type of analysis can have the effect of accelerating translation of AI-based OCT image analysis to the clinic.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 12\",\"pages\":\"3947-3949\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.563493\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.563493","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

光学相干断层扫描(OCT)具有足够的深度穿透能力来检测皮肤病变,但其检测效果可以通过人工智能(AI)建模的辅助来辅助。人工智能模型构建通过比较健康和病变组织的图像来识别病理,但健康的皮肤在不同皮肤类型和年龄的人身上表现出很大的差异。在这里,我们选择了一个用于皮肤分析和衰减系数的常用参数,并分析了它在真皮和表皮、皮肤暴露和皮肤保护区域的变化情况,研究对象为100名受试者,他们来自各种皮肤类型(Fitzpatrick I-V型)和年龄(13-83岁)。对于统计分析,我们报告了真皮和表皮以及阳光照射和防晒区域在不同年龄和皮肤类型中的比较是否具有统计学意义,不确定或不具有统计学意义,并为该参数提供了95%的置信区间,因为它涵盖了不同年龄和皮肤类型。使用健康图像预先分析特征的过程为如何简化招聘过程提供了路线图,同时获得足够范围的图像以进行有效的人工智能模型构建。我们期望这种类型的分析能够加速基于人工智能的OCT图像分析向临床的转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OCT in dermatology: a process for determining whether a fully diversified dataset is needed for AI model-building.

Optical coherence tomography (OCT) has sufficient depth penetration for detection of skin pathologies, but its detection effectiveness can be aided by the assistance of artificial intelligence (AI) modeling. AI model-building identifies pathologies by comparing images from healthy and diseased tissues, but healthy skin can present as quite variable across skin types and ages. Here, we selected a commonly used parameter for skin analysis and attenuation coefficient and analyzed how it varied in the dermis and epidermis, and in skin-exposed and skin-protected regions, for 100 subjects from a wide range of skin types (Fitzpatrick types I-V) and ages (13-83). For the statistical analysis, we report whether comparisons of the dermis and epidermis and sun-exposed and sun-protected areas across age and skin type are statistically significant, indeterminate, or not statistically significant and present 95% confidence intervals for this parameter as it ranges across different ages and skin types. This process of pre-analyzing features using healthy images provides a roadmap for how to ease the recruitment process while acquiring a sufficient range of images for effective AI model-building. We expect this type of analysis can have the effect of accelerating translation of AI-based OCT image analysis to the clinic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信