利用端到端深度学习实现1520公里光纤传输的400gbps量子噪声流密码加密。

IF 3.1 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-06-15 DOI:10.1364/OL.553692
Yunhao Xie, Xianran Huang, Guozhi Xu, Junzhe Xiao, Mengyue Shi, Weisheng Hu, Lilin Yi
{"title":"利用端到端深度学习实现1520公里光纤传输的400gbps量子噪声流密码加密。","authors":"Yunhao Xie, Xianran Huang, Guozhi Xu, Junzhe Xiao, Mengyue Shi, Weisheng Hu, Lilin Yi","doi":"10.1364/OL.553692","DOIUrl":null,"url":null,"abstract":"<p><p>In the era of large models and big data, the security of optical fiber communication backbone networks has garnered significant attention. Quantum noise stream cipher (QNSC) stands as a crucial method for safeguarding the physical layer security of optical fiber communications, yet the current schemes lag behind the rate capabilities of existing 400G optical fiber backbone networks. In this paper, we introduce deep learning into QNSC and propose an end-to-end quantum noise stream cipher (E2E-QNSC) scheme, which encrypts 16 quadrature amplitude modulation (QAM) into E2E-65536QAM/QNSC. Our experiments successfully demonstrate secure optical communication with a single-channel rate of 400 Gbps, a total capacity of 8.4 Tbps, and a transmission distance of 1520 km. Even in the most extreme scenarios, the detection failure probability (DFP) of the scheme remains at an excellent level greater than 0.9999, proving the security of the approach. The experimental results presented herein represent the highest rate-distance product record of QNSC secure transmission systems, to the best of our knowledge.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 12","pages":"3808-3811"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of 400 Gbps quantum noise stream cipher encryption for 1520 km fiber transmission using end-to-end deep learning.\",\"authors\":\"Yunhao Xie, Xianran Huang, Guozhi Xu, Junzhe Xiao, Mengyue Shi, Weisheng Hu, Lilin Yi\",\"doi\":\"10.1364/OL.553692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the era of large models and big data, the security of optical fiber communication backbone networks has garnered significant attention. Quantum noise stream cipher (QNSC) stands as a crucial method for safeguarding the physical layer security of optical fiber communications, yet the current schemes lag behind the rate capabilities of existing 400G optical fiber backbone networks. In this paper, we introduce deep learning into QNSC and propose an end-to-end quantum noise stream cipher (E2E-QNSC) scheme, which encrypts 16 quadrature amplitude modulation (QAM) into E2E-65536QAM/QNSC. Our experiments successfully demonstrate secure optical communication with a single-channel rate of 400 Gbps, a total capacity of 8.4 Tbps, and a transmission distance of 1520 km. Even in the most extreme scenarios, the detection failure probability (DFP) of the scheme remains at an excellent level greater than 0.9999, proving the security of the approach. The experimental results presented herein represent the highest rate-distance product record of QNSC secure transmission systems, to the best of our knowledge.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 12\",\"pages\":\"3808-3811\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.553692\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.553692","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

在大模型、大数据时代,光纤通信骨干网的安全问题备受关注。量子噪声流密码(QNSC)是保障光纤通信物理层安全的重要手段,但目前的方案与现有400G光纤骨干网的速率能力存在一定的差距。本文将深度学习引入到QNSC中,提出了一种端到端的量子噪声流密码(E2E-QNSC)方案,该方案将16个正交调幅(QAM)加密为E2E-65536QAM/QNSC。我们的实验成功地展示了单通道速率为400 Gbps,总容量为8.4 Tbps,传输距离为1520 km的安全光通信。即使在最极端的情况下,该方案的检测失败概率(DFP)仍然保持在大于0.9999的优秀水平,证明了该方法的安全性。据我们所知,本文给出的实验结果代表了QNSC安全传输系统的最高速率-距离产品记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of 400 Gbps quantum noise stream cipher encryption for 1520 km fiber transmission using end-to-end deep learning.

In the era of large models and big data, the security of optical fiber communication backbone networks has garnered significant attention. Quantum noise stream cipher (QNSC) stands as a crucial method for safeguarding the physical layer security of optical fiber communications, yet the current schemes lag behind the rate capabilities of existing 400G optical fiber backbone networks. In this paper, we introduce deep learning into QNSC and propose an end-to-end quantum noise stream cipher (E2E-QNSC) scheme, which encrypts 16 quadrature amplitude modulation (QAM) into E2E-65536QAM/QNSC. Our experiments successfully demonstrate secure optical communication with a single-channel rate of 400 Gbps, a total capacity of 8.4 Tbps, and a transmission distance of 1520 km. Even in the most extreme scenarios, the detection failure probability (DFP) of the scheme remains at an excellent level greater than 0.9999, proving the security of the approach. The experimental results presented herein represent the highest rate-distance product record of QNSC secure transmission systems, to the best of our knowledge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信