Philipp Lohmann, Daniel Wendland, Francesco Lenzini, Wolfram H P Pernice
{"title":"铌酸锂薄膜的高效率非线性变频。","authors":"Philipp Lohmann, Daniel Wendland, Francesco Lenzini, Wolfram H P Pernice","doi":"10.1364/OL.561750","DOIUrl":null,"url":null,"abstract":"<p><p>Integrated photonic platforms can greatly enhance the efficiency of nonlinear frequency conversion processes by tightly confining light on a sub-micron scale. However, this advantage is often reduced by large fiber-to-chip coupling losses that drastically reduce the overall performance. Here, we demonstrate a highly efficient thin-film lithium niobate (LN) frequency converter based on periodically poled waveguides combined with direct laser written out-of-plane couplers. Including on-chip and fiber-to-chip losses, we obtain a conversion efficiency of 152%/W, thus demonstrating a promising approach for future scalable integrated devices.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 12","pages":"3844-3847"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High system efficiency nonlinear frequency conversion on thin-film lithium niobate.\",\"authors\":\"Philipp Lohmann, Daniel Wendland, Francesco Lenzini, Wolfram H P Pernice\",\"doi\":\"10.1364/OL.561750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integrated photonic platforms can greatly enhance the efficiency of nonlinear frequency conversion processes by tightly confining light on a sub-micron scale. However, this advantage is often reduced by large fiber-to-chip coupling losses that drastically reduce the overall performance. Here, we demonstrate a highly efficient thin-film lithium niobate (LN) frequency converter based on periodically poled waveguides combined with direct laser written out-of-plane couplers. Including on-chip and fiber-to-chip losses, we obtain a conversion efficiency of 152%/W, thus demonstrating a promising approach for future scalable integrated devices.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 12\",\"pages\":\"3844-3847\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.561750\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.561750","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
High system efficiency nonlinear frequency conversion on thin-film lithium niobate.
Integrated photonic platforms can greatly enhance the efficiency of nonlinear frequency conversion processes by tightly confining light on a sub-micron scale. However, this advantage is often reduced by large fiber-to-chip coupling losses that drastically reduce the overall performance. Here, we demonstrate a highly efficient thin-film lithium niobate (LN) frequency converter based on periodically poled waveguides combined with direct laser written out-of-plane couplers. Including on-chip and fiber-to-chip losses, we obtain a conversion efficiency of 152%/W, thus demonstrating a promising approach for future scalable integrated devices.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.