用于增强实时三维角膜成像的时间色散彩色共聚焦显微镜的开发和表征。

IF 3.1 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-06-15 DOI:10.1364/OL.564590
Zhexi Liu, Xuefang Yang, Jianghao Shen, Xun Chen, Shuhua Yue, Pu Wang
{"title":"用于增强实时三维角膜成像的时间色散彩色共聚焦显微镜的开发和表征。","authors":"Zhexi Liu, Xuefang Yang, Jianghao Shen, Xun Chen, Shuhua Yue, Pu Wang","doi":"10.1364/OL.564590","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate visualization of corneal microstructures with micrometer resolution is critical for diagnosing ocular diseases and guiding treatment strategies. Reflectance confocal microscopy (RCM) was developed for high-resolution three-dimensional (3D) imaging, but its reliance on mechanical scanning limits the 3D imaging speed and may introduce motion artifacts. Here, we demonstrated a time-stretch chromatic confocal microscopy (TSCCM), a single-shot volumetric imaging technique that eliminates mechanical axial scanning by encoding depth information into time-domain swept waveforms. A supercontinuum laser pulse is temporally stretched from picoseconds to 85 ns using free-space angular-chirp-enhanced delay (FACED). FACED enables a low-loss dispersive system that replaces conventional single-mode fiber (SMF), reducing power loss by 1.4-1.8× while achieving a dispersion of 0.55 ns/nm across 650-850 nm. Combined with a chromatic objective, TSCCM enables depth-resolved detection at an A-scan rate of up to 1 MHz. Our system achieves 5 volumes per second with 1-2.2 μm lateral resolution, 346 μm penetration depth in phantoms, and 150 μm in rodent corneas. By decoupling imaging speed from mechanical constraints, TSCCM offers a transformative platform for real-time, high-resolution ophthalmic diagnostics.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 12","pages":"3828-3831"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and characterization of a temporal dispersive chromatic confocal microscopy for enhancing real-time three-dimensional cornea imaging.\",\"authors\":\"Zhexi Liu, Xuefang Yang, Jianghao Shen, Xun Chen, Shuhua Yue, Pu Wang\",\"doi\":\"10.1364/OL.564590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate visualization of corneal microstructures with micrometer resolution is critical for diagnosing ocular diseases and guiding treatment strategies. Reflectance confocal microscopy (RCM) was developed for high-resolution three-dimensional (3D) imaging, but its reliance on mechanical scanning limits the 3D imaging speed and may introduce motion artifacts. Here, we demonstrated a time-stretch chromatic confocal microscopy (TSCCM), a single-shot volumetric imaging technique that eliminates mechanical axial scanning by encoding depth information into time-domain swept waveforms. A supercontinuum laser pulse is temporally stretched from picoseconds to 85 ns using free-space angular-chirp-enhanced delay (FACED). FACED enables a low-loss dispersive system that replaces conventional single-mode fiber (SMF), reducing power loss by 1.4-1.8× while achieving a dispersion of 0.55 ns/nm across 650-850 nm. Combined with a chromatic objective, TSCCM enables depth-resolved detection at an A-scan rate of up to 1 MHz. Our system achieves 5 volumes per second with 1-2.2 μm lateral resolution, 346 μm penetration depth in phantoms, and 150 μm in rodent corneas. By decoupling imaging speed from mechanical constraints, TSCCM offers a transformative platform for real-time, high-resolution ophthalmic diagnostics.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 12\",\"pages\":\"3828-3831\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.564590\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.564590","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

以微米级分辨率精确可视化角膜微结构对于诊断眼部疾病和指导治疗策略至关重要。反射共聚焦显微镜(RCM)是为高分辨率三维(3D)成像而开发的,但它对机械扫描的依赖限制了3D成像速度,并可能引入运动伪影。在这里,我们展示了一种时间拉伸彩色共聚焦显微镜(TSCCM),这是一种单镜头体积成像技术,通过将深度信息编码为时域扫描波形来消除机械轴向扫描。利用自由空间角啁啾增强延迟(faces)将超连续激光脉冲从皮秒暂时拉伸到85纳秒。face实现了一种低损耗色散系统,取代了传统的单模光纤(SMF),降低了1.4-1.8倍的功率损耗,同时在650-850纳米范围内实现了0.55 ns/nm的色散。与彩色物镜相结合,TSCCM能够以高达1 MHz的a扫描速率进行深度分辨检测。我们的系统可以达到每秒5个体积,横向分辨率为1-2.2 μm,在幻影中穿透深度为346 μm,在啮齿动物的角膜中穿透深度为150 μm。通过将成像速度与机械限制脱钩,TSCCM为实时、高分辨率眼科诊断提供了一个变革性的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and characterization of a temporal dispersive chromatic confocal microscopy for enhancing real-time three-dimensional cornea imaging.

Accurate visualization of corneal microstructures with micrometer resolution is critical for diagnosing ocular diseases and guiding treatment strategies. Reflectance confocal microscopy (RCM) was developed for high-resolution three-dimensional (3D) imaging, but its reliance on mechanical scanning limits the 3D imaging speed and may introduce motion artifacts. Here, we demonstrated a time-stretch chromatic confocal microscopy (TSCCM), a single-shot volumetric imaging technique that eliminates mechanical axial scanning by encoding depth information into time-domain swept waveforms. A supercontinuum laser pulse is temporally stretched from picoseconds to 85 ns using free-space angular-chirp-enhanced delay (FACED). FACED enables a low-loss dispersive system that replaces conventional single-mode fiber (SMF), reducing power loss by 1.4-1.8× while achieving a dispersion of 0.55 ns/nm across 650-850 nm. Combined with a chromatic objective, TSCCM enables depth-resolved detection at an A-scan rate of up to 1 MHz. Our system achieves 5 volumes per second with 1-2.2 μm lateral resolution, 346 μm penetration depth in phantoms, and 150 μm in rodent corneas. By decoupling imaging speed from mechanical constraints, TSCCM offers a transformative platform for real-time, high-resolution ophthalmic diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信