切尔诺贝利核电站事故后瑞典的辐射剂量和癌症的终生归因风险。

IF 1.4 4区 医学 Q4 ENVIRONMENTAL SCIENCES
Martin Tondel, Katja Gabrysch, Mats Isaksson, Christopher Rääf
{"title":"切尔诺贝利核电站事故后瑞典的辐射剂量和癌症的终生归因风险。","authors":"Martin Tondel, Katja Gabrysch, Mats Isaksson, Christopher Rääf","doi":"10.1097/HP.0000000000001998","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Methods for estimating radiological consequences in terms of radiation doses and cancer risks are needed for informed decisions on mitigation efforts after a radionuclide event. The 1986 Chernobyl Nuclear Power Plant accident fallout in Sweden was used as a case study. Open-source data on annual sex-specific population data in 1-y classes by municipality (n = 290), counties (n = 21), and future projection were retrieved from Statistics Sweden from 1986 to 2035. Published organ dose coefficients, cancer risk coefficients, and established methods for dose calculations and cancer risk projections were applied to estimate organ absorbed doses (mGy), effective dose (mSv), collective dose (person-Sv), and lifetime attributable risk (LAR). Due to the geographically variable Chernobyl fallout in Sweden, the variability in absorbed organ doses was greater between municipalities and counties than between organs or sexes. LAR was translated into 377 male and 448 female extra cancer cases over 50 y post-Chernobyl. Overall, 38% of these cancer cases could be attributed to the internal dose in males and 32% in females. The highest number of cancer cases was estimated for Västernorrland county, with only 3% of the Swedish population in 1986, but 18% of the excess cancer cases 1986 to 2035. The collective dose was calculated to 6,028 person-Sv, whereas 2,148 person-Sv (36%) was internal dose. Like for LAR, the population of Västernorrland county got 18% of the total collective dose. The excess number of cancer cases derived from LAR and collective dose gave similar results. Our methods can be adopted to other countries and different fallout scenarios.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiation Doses and Lifetime Attributable Risk of Cancer in Sweden after the Chernobyl Nuclear Power Plant Accident.\",\"authors\":\"Martin Tondel, Katja Gabrysch, Mats Isaksson, Christopher Rääf\",\"doi\":\"10.1097/HP.0000000000001998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Methods for estimating radiological consequences in terms of radiation doses and cancer risks are needed for informed decisions on mitigation efforts after a radionuclide event. The 1986 Chernobyl Nuclear Power Plant accident fallout in Sweden was used as a case study. Open-source data on annual sex-specific population data in 1-y classes by municipality (n = 290), counties (n = 21), and future projection were retrieved from Statistics Sweden from 1986 to 2035. Published organ dose coefficients, cancer risk coefficients, and established methods for dose calculations and cancer risk projections were applied to estimate organ absorbed doses (mGy), effective dose (mSv), collective dose (person-Sv), and lifetime attributable risk (LAR). Due to the geographically variable Chernobyl fallout in Sweden, the variability in absorbed organ doses was greater between municipalities and counties than between organs or sexes. LAR was translated into 377 male and 448 female extra cancer cases over 50 y post-Chernobyl. Overall, 38% of these cancer cases could be attributed to the internal dose in males and 32% in females. The highest number of cancer cases was estimated for Västernorrland county, with only 3% of the Swedish population in 1986, but 18% of the excess cancer cases 1986 to 2035. The collective dose was calculated to 6,028 person-Sv, whereas 2,148 person-Sv (36%) was internal dose. Like for LAR, the population of Västernorrland county got 18% of the total collective dose. The excess number of cancer cases derived from LAR and collective dose gave similar results. Our methods can be adopted to other countries and different fallout scenarios.</p>\",\"PeriodicalId\":12976,\"journal\":{\"name\":\"Health physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/HP.0000000000001998\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001998","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要:放射性核素事件发生后,需要在辐射剂量和癌症风险方面评估辐射后果的方法,以便在知情的情况下做出缓解努力的决策。1986年瑞典切尔诺贝利核电站事故的放射性尘埃被用作案例研究。从1986年到2035年,从瑞典统计局检索了按直辖市(n = 290)、县(n = 21)和未来预测的1-y年级年度性别人口数据的开源数据。已发表的器官剂量系数、癌症风险系数和已建立的剂量计算和癌症风险预测方法被用于估计器官吸收剂量(mGy)、有效剂量(mSv)、集体剂量(人-西沃特)和终生归因风险(LAR)。由于瑞典切尔诺贝利放射性尘降物的地理差异,不同市和县之间吸收器官剂量的差异大于不同器官或性别之间的差异。在切尔诺贝利事故后的50年里,LAR被翻译成377名男性和448名女性额外的癌症病例。总的来说,这些癌症病例中有38%可归因于男性的内剂量,32%可归因于女性的内剂量。据估计,癌症病例数最高的是Västernorrland县,1986年仅占瑞典人口的3%,但1986年至2035年的超额癌症病例占18%。集体剂量为6028人西沃特,而内剂量为2148人西沃特(36%)。与LAR一样,Västernorrland县的人口获得了总集体剂量的18%。LAR和集体剂量导致的过量癌症病例数给出了类似的结果。我们的方法可以适用于其他国家和不同的放射性尘降情景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiation Doses and Lifetime Attributable Risk of Cancer in Sweden after the Chernobyl Nuclear Power Plant Accident.

Abstract: Methods for estimating radiological consequences in terms of radiation doses and cancer risks are needed for informed decisions on mitigation efforts after a radionuclide event. The 1986 Chernobyl Nuclear Power Plant accident fallout in Sweden was used as a case study. Open-source data on annual sex-specific population data in 1-y classes by municipality (n = 290), counties (n = 21), and future projection were retrieved from Statistics Sweden from 1986 to 2035. Published organ dose coefficients, cancer risk coefficients, and established methods for dose calculations and cancer risk projections were applied to estimate organ absorbed doses (mGy), effective dose (mSv), collective dose (person-Sv), and lifetime attributable risk (LAR). Due to the geographically variable Chernobyl fallout in Sweden, the variability in absorbed organ doses was greater between municipalities and counties than between organs or sexes. LAR was translated into 377 male and 448 female extra cancer cases over 50 y post-Chernobyl. Overall, 38% of these cancer cases could be attributed to the internal dose in males and 32% in females. The highest number of cancer cases was estimated for Västernorrland county, with only 3% of the Swedish population in 1986, but 18% of the excess cancer cases 1986 to 2035. The collective dose was calculated to 6,028 person-Sv, whereas 2,148 person-Sv (36%) was internal dose. Like for LAR, the population of Västernorrland county got 18% of the total collective dose. The excess number of cancer cases derived from LAR and collective dose gave similar results. Our methods can be adopted to other countries and different fallout scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health physics
Health physics 医学-公共卫生、环境卫生与职业卫生
CiteScore
4.20
自引率
0.00%
发文量
324
审稿时长
3-8 weeks
期刊介绍: Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信