Zachary Easton, Kurt Stephenson, Brian Benham, J. K. Böhlke, Anthony Buda, Amy Collick, Lara Fowler, Ellen Gilinsky, Andrew Miller, Gregory Noe, Leah H. Palm-Forster, Leonard Shabman, Theresa Wynn-Thompson
{"title":"非点源挑战:实现切萨皮克湾流域营养减少目标的障碍和机遇","authors":"Zachary Easton, Kurt Stephenson, Brian Benham, J. K. Böhlke, Anthony Buda, Amy Collick, Lara Fowler, Ellen Gilinsky, Andrew Miller, Gregory Noe, Leah H. Palm-Forster, Leonard Shabman, Theresa Wynn-Thompson","doi":"10.1111/1752-1688.70034","DOIUrl":null,"url":null,"abstract":"<p>This document examines the Chesapeake Bay watershed response to nutrient and sediment reduction efforts under the Clean Water Act's total maximum daily load (TMDL) regulation. As the 2025 Chesapeake Bay TMDL deadline approaches, water quality goals remain unmet, primarily because of nonpoint source pollution, the largest remaining source of nutrients and sediment, and the primary obstacle to meeting the TMDL. We focus on the factors influencing the gap between the expected effect of management to reduce nonpoint source loads reaching the Bay and empirical evidence suggesting that decades of effort have not produced the expected improvement. This gap may be caused by both insufficient scale and type of implemented water quality management practices and by an overestimation of practice effectiveness. Reasons water quality goals remain unmet include legacy nutrients and lag times masking or delaying the effects of management efforts, areas with large nutrient mass imbalances contributing disproportionate loads, and the difficulty of incentivizing behavior change in voluntary nonpoint source programs. Closing the response gap may require fundamental changes to nonpoint source programs. Apart from seeking additional funding, nonpoint source programs could develop policies to more effectively incentivize behavior change, identify and target treatment of high loading areas with appropriate management actions, and address nutrient mass imbalances.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.70034","citationCount":"0","resultStr":"{\"title\":\"The Nonpoint Source Challenge: Obstacles and Opportunities for Meeting Nutrient Reduction Goals in the Chesapeake Bay Watershed\",\"authors\":\"Zachary Easton, Kurt Stephenson, Brian Benham, J. K. Böhlke, Anthony Buda, Amy Collick, Lara Fowler, Ellen Gilinsky, Andrew Miller, Gregory Noe, Leah H. Palm-Forster, Leonard Shabman, Theresa Wynn-Thompson\",\"doi\":\"10.1111/1752-1688.70034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This document examines the Chesapeake Bay watershed response to nutrient and sediment reduction efforts under the Clean Water Act's total maximum daily load (TMDL) regulation. As the 2025 Chesapeake Bay TMDL deadline approaches, water quality goals remain unmet, primarily because of nonpoint source pollution, the largest remaining source of nutrients and sediment, and the primary obstacle to meeting the TMDL. We focus on the factors influencing the gap between the expected effect of management to reduce nonpoint source loads reaching the Bay and empirical evidence suggesting that decades of effort have not produced the expected improvement. This gap may be caused by both insufficient scale and type of implemented water quality management practices and by an overestimation of practice effectiveness. Reasons water quality goals remain unmet include legacy nutrients and lag times masking or delaying the effects of management efforts, areas with large nutrient mass imbalances contributing disproportionate loads, and the difficulty of incentivizing behavior change in voluntary nonpoint source programs. Closing the response gap may require fundamental changes to nonpoint source programs. Apart from seeking additional funding, nonpoint source programs could develop policies to more effectively incentivize behavior change, identify and target treatment of high loading areas with appropriate management actions, and address nutrient mass imbalances.</p>\",\"PeriodicalId\":17234,\"journal\":{\"name\":\"Journal of The American Water Resources Association\",\"volume\":\"61 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.70034\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The American Water Resources Association\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.70034\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.70034","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
The Nonpoint Source Challenge: Obstacles and Opportunities for Meeting Nutrient Reduction Goals in the Chesapeake Bay Watershed
This document examines the Chesapeake Bay watershed response to nutrient and sediment reduction efforts under the Clean Water Act's total maximum daily load (TMDL) regulation. As the 2025 Chesapeake Bay TMDL deadline approaches, water quality goals remain unmet, primarily because of nonpoint source pollution, the largest remaining source of nutrients and sediment, and the primary obstacle to meeting the TMDL. We focus on the factors influencing the gap between the expected effect of management to reduce nonpoint source loads reaching the Bay and empirical evidence suggesting that decades of effort have not produced the expected improvement. This gap may be caused by both insufficient scale and type of implemented water quality management practices and by an overestimation of practice effectiveness. Reasons water quality goals remain unmet include legacy nutrients and lag times masking or delaying the effects of management efforts, areas with large nutrient mass imbalances contributing disproportionate loads, and the difficulty of incentivizing behavior change in voluntary nonpoint source programs. Closing the response gap may require fundamental changes to nonpoint source programs. Apart from seeking additional funding, nonpoint source programs could develop policies to more effectively incentivize behavior change, identify and target treatment of high loading areas with appropriate management actions, and address nutrient mass imbalances.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.