单金属银纳米颗粒的植物制备:化学表征和量子计算分析增强新鲜蔬菜保鲜的抗菌性能

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Festus O. Ogungbemiro, Barnabas A. Oshido, Barnabas A. Kyenge
{"title":"单金属银纳米颗粒的植物制备:化学表征和量子计算分析增强新鲜蔬菜保鲜的抗菌性能","authors":"Festus O. Ogungbemiro,&nbsp;Barnabas A. Oshido,&nbsp;Barnabas A. Kyenge","doi":"10.1002/slct.202500164","DOIUrl":null,"url":null,"abstract":"<p>The green synthesis of silver nanoparticles (AgNPs) using Lophira alata (LA) and Burkea africana (BA) extracts offers a sustainable approach for antimicrobial vegetable preservation. Phytochemicals like polyphenols and flavonoids act as reducing agents, with UV-vis spectroscopy confirming AgNP formation (peak at 420 nm). XRD revealed crystallite sizes of 13.66 nm (LA-AgNPs) and 8.78 nm (BA-AgNPs), while TEM showed spherical particles (10–50 nm). LA-AgNPs exhibited strong antibacterial activity, with inhibition zones of 14.45 mm (Staphylococcus aureus) and 13.55 mm (Pseudomonas aeruginosa). BA-AgNPs showed the lowest MIC against Bacillus subtilis (3.45 µg/mL vs. chloramphenicol’s 5.72 µg/mL) and superior bactericidal effects (MBC: 6.90 µg/mL vs. 11.44 µg/mL). Both AgNPs inhibited cellulase (90%) and pectinase (87%), crucial for extending vegetable shelf life. Quantum computational analysis revealed optimal energy gaps (LA-AgNPs: 0.88 eV; BA-AgNPs: 0.76 eV), indicating high reactivity. Non-covalent interaction (NCI) analysis confirmed stabilization via van der Waals forces and hydrogen bonding. Adsorption studies highlighted strong binding energies (−1.51 to −2.52 eV) for key phytocompounds (Lophirone, Betulinic acid, Fisetinidol), ensuring nanoparticle stability. These findings demonstrate the potential of LA- and BA-AgNPs as eco-friendly antimicrobial agents for food preservation.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"10 23","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phytofabrication of Mono-Metallic Silver Nanoparticles: Chemical Characterization and Quantum Computational Analysis for Enhanced Antimicrobial Properties in Fresh Vegetable Preservation\",\"authors\":\"Festus O. Ogungbemiro,&nbsp;Barnabas A. Oshido,&nbsp;Barnabas A. Kyenge\",\"doi\":\"10.1002/slct.202500164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The green synthesis of silver nanoparticles (AgNPs) using Lophira alata (LA) and Burkea africana (BA) extracts offers a sustainable approach for antimicrobial vegetable preservation. Phytochemicals like polyphenols and flavonoids act as reducing agents, with UV-vis spectroscopy confirming AgNP formation (peak at 420 nm). XRD revealed crystallite sizes of 13.66 nm (LA-AgNPs) and 8.78 nm (BA-AgNPs), while TEM showed spherical particles (10–50 nm). LA-AgNPs exhibited strong antibacterial activity, with inhibition zones of 14.45 mm (Staphylococcus aureus) and 13.55 mm (Pseudomonas aeruginosa). BA-AgNPs showed the lowest MIC against Bacillus subtilis (3.45 µg/mL vs. chloramphenicol’s 5.72 µg/mL) and superior bactericidal effects (MBC: 6.90 µg/mL vs. 11.44 µg/mL). Both AgNPs inhibited cellulase (90%) and pectinase (87%), crucial for extending vegetable shelf life. Quantum computational analysis revealed optimal energy gaps (LA-AgNPs: 0.88 eV; BA-AgNPs: 0.76 eV), indicating high reactivity. Non-covalent interaction (NCI) analysis confirmed stabilization via van der Waals forces and hydrogen bonding. Adsorption studies highlighted strong binding energies (−1.51 to −2.52 eV) for key phytocompounds (Lophirone, Betulinic acid, Fisetinidol), ensuring nanoparticle stability. These findings demonstrate the potential of LA- and BA-AgNPs as eco-friendly antimicrobial agents for food preservation.</p>\",\"PeriodicalId\":146,\"journal\":{\"name\":\"ChemistrySelect\",\"volume\":\"10 23\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistrySelect\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/slct.202500164\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202500164","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用牛皮草(LA)和非洲Burkea (BA)提取物绿色合成银纳米颗粒(AgNPs)为抗菌蔬菜保存提供了一种可持续的方法。植物化学物质如多酚和类黄酮作为还原剂,紫外-可见光谱证实AgNP形成(峰值在420 nm)。XRD显示LA-AgNPs晶粒尺寸为13.66 nm, BA-AgNPs晶粒尺寸为8.78 nm, TEM显示为10 ~ 50 nm的球形颗粒。LA-AgNPs具有较强的抗菌活性,对金黄色葡萄球菌和铜绿假单胞菌的抑制范围分别为14.45 mm和13.55 mm。BA-AgNPs对枯草芽孢杆菌的MIC最低(3.45µg/mL,氯霉素为5.72µg/mL),杀菌效果较好(MBC为6.90µg/mL,氯霉素为11.44µg/mL)。两种AgNPs均抑制纤维素酶(90%)和果胶酶(87%),这对延长蔬菜保质期至关重要。量子计算分析表明,最佳能隙(LA-AgNPs: 0.88 eV;BA-AgNPs: 0.76 eV),反应活性高。非共价相互作用(NCI)分析证实了范德华力和氢键的稳定作用。吸附研究强调了关键植物化合物(Lophirone,白桦酸,非替尼醇)的强结合能(- 1.51至- 2.52 eV),确保了纳米颗粒的稳定性。这些发现证明了LA-和BA-AgNPs作为食品保存的环保抗菌剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Phytofabrication of Mono-Metallic Silver Nanoparticles: Chemical Characterization and Quantum Computational Analysis for Enhanced Antimicrobial Properties in Fresh Vegetable Preservation

Phytofabrication of Mono-Metallic Silver Nanoparticles: Chemical Characterization and Quantum Computational Analysis for Enhanced Antimicrobial Properties in Fresh Vegetable Preservation

The green synthesis of silver nanoparticles (AgNPs) using Lophira alata (LA) and Burkea africana (BA) extracts offers a sustainable approach for antimicrobial vegetable preservation. Phytochemicals like polyphenols and flavonoids act as reducing agents, with UV-vis spectroscopy confirming AgNP formation (peak at 420 nm). XRD revealed crystallite sizes of 13.66 nm (LA-AgNPs) and 8.78 nm (BA-AgNPs), while TEM showed spherical particles (10–50 nm). LA-AgNPs exhibited strong antibacterial activity, with inhibition zones of 14.45 mm (Staphylococcus aureus) and 13.55 mm (Pseudomonas aeruginosa). BA-AgNPs showed the lowest MIC against Bacillus subtilis (3.45 µg/mL vs. chloramphenicol’s 5.72 µg/mL) and superior bactericidal effects (MBC: 6.90 µg/mL vs. 11.44 µg/mL). Both AgNPs inhibited cellulase (90%) and pectinase (87%), crucial for extending vegetable shelf life. Quantum computational analysis revealed optimal energy gaps (LA-AgNPs: 0.88 eV; BA-AgNPs: 0.76 eV), indicating high reactivity. Non-covalent interaction (NCI) analysis confirmed stabilization via van der Waals forces and hydrogen bonding. Adsorption studies highlighted strong binding energies (−1.51 to −2.52 eV) for key phytocompounds (Lophirone, Betulinic acid, Fisetinidol), ensuring nanoparticle stability. These findings demonstrate the potential of LA- and BA-AgNPs as eco-friendly antimicrobial agents for food preservation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemistrySelect
ChemistrySelect Chemistry-General Chemistry
CiteScore
3.30
自引率
4.80%
发文量
1809
审稿时长
1.6 months
期刊介绍: ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信