Ignasi Ventura Nadal , Jochen Stiasny , Spyros Chatzivasileiadis
{"title":"物理信息神经网络:即插即用集成到电力系统动态模拟","authors":"Ignasi Ventura Nadal , Jochen Stiasny , Spyros Chatzivasileiadis","doi":"10.1016/j.epsr.2025.111885","DOIUrl":null,"url":null,"abstract":"<div><div>Time-domain simulations are crucial for ensuring power system stability and avoiding critical scenarios that could lead to blackouts. The next-generation power systems require a significant increase in the computational cost and complexity of these simulations due to additional degrees of uncertainty, non-linearity and states. Physics-Informed Neural Networks (PINN) have been shown to accelerate single-component simulations by several orders of magnitude. However, their application to current time-domain simulation solvers has been particularly challenging since the system’s dynamics depend on multiple components. Using a new training formulation, this paper introduces the first natural step to integrate PINNs into multi-component time-domain simulations. We propose PINNs as an alternative to other classical numerical methods for individual components. Once trained, these neural networks approximate component dynamics more accurately for longer time steps. Formulated as an implicit and consistent method with the transient simulation workflow, PINNs speed up simulation time by significantly increasing the time steps used. For explanation clarity, we demonstrate the training, integration, and simulation framework for several combinations of PINNs and numerical solution methods using the IEEE 9-bus system, although the method applies equally well to any power system size.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"248 ","pages":"Article 111885"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-Informed Neural Networks: A plug and play integration into power system dynamic simulations\",\"authors\":\"Ignasi Ventura Nadal , Jochen Stiasny , Spyros Chatzivasileiadis\",\"doi\":\"10.1016/j.epsr.2025.111885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Time-domain simulations are crucial for ensuring power system stability and avoiding critical scenarios that could lead to blackouts. The next-generation power systems require a significant increase in the computational cost and complexity of these simulations due to additional degrees of uncertainty, non-linearity and states. Physics-Informed Neural Networks (PINN) have been shown to accelerate single-component simulations by several orders of magnitude. However, their application to current time-domain simulation solvers has been particularly challenging since the system’s dynamics depend on multiple components. Using a new training formulation, this paper introduces the first natural step to integrate PINNs into multi-component time-domain simulations. We propose PINNs as an alternative to other classical numerical methods for individual components. Once trained, these neural networks approximate component dynamics more accurately for longer time steps. Formulated as an implicit and consistent method with the transient simulation workflow, PINNs speed up simulation time by significantly increasing the time steps used. For explanation clarity, we demonstrate the training, integration, and simulation framework for several combinations of PINNs and numerical solution methods using the IEEE 9-bus system, although the method applies equally well to any power system size.</div></div>\",\"PeriodicalId\":50547,\"journal\":{\"name\":\"Electric Power Systems Research\",\"volume\":\"248 \",\"pages\":\"Article 111885\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electric Power Systems Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378779625004766\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779625004766","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Physics-Informed Neural Networks: A plug and play integration into power system dynamic simulations
Time-domain simulations are crucial for ensuring power system stability and avoiding critical scenarios that could lead to blackouts. The next-generation power systems require a significant increase in the computational cost and complexity of these simulations due to additional degrees of uncertainty, non-linearity and states. Physics-Informed Neural Networks (PINN) have been shown to accelerate single-component simulations by several orders of magnitude. However, their application to current time-domain simulation solvers has been particularly challenging since the system’s dynamics depend on multiple components. Using a new training formulation, this paper introduces the first natural step to integrate PINNs into multi-component time-domain simulations. We propose PINNs as an alternative to other classical numerical methods for individual components. Once trained, these neural networks approximate component dynamics more accurately for longer time steps. Formulated as an implicit and consistent method with the transient simulation workflow, PINNs speed up simulation time by significantly increasing the time steps used. For explanation clarity, we demonstrate the training, integration, and simulation framework for several combinations of PINNs and numerical solution methods using the IEEE 9-bus system, although the method applies equally well to any power system size.
期刊介绍:
Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview.
• Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
• Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design.
• Substation work: equipment design, protection and control systems.
• Distribution techniques, equipment development, and smart grids.
• The utilization area from energy efficiency to distributed load levelling techniques.
• Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.