多尺度粘弹性模型的变指数记忆演化方程分析

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Yiqun Li , Xiangcheng Zheng
{"title":"多尺度粘弹性模型的变指数记忆演化方程分析","authors":"Yiqun Li ,&nbsp;Xiangcheng Zheng","doi":"10.1016/j.aml.2025.109640","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the well-posedness and solution regularity of an evolution equation with non-positive type variable-exponent memory, which describes multiscale viscoelasticity in materials with memory. The perturbation method is applied for model transformation, based on which the well-posedness is proved. Then the weighted solution regularity is derived, where the initial singularity is characterized by the initial value of variable exponent.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"171 ","pages":"Article 109640"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of evolution equation with variable-exponent memory modeling multiscale viscoelasticity\",\"authors\":\"Yiqun Li ,&nbsp;Xiangcheng Zheng\",\"doi\":\"10.1016/j.aml.2025.109640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the well-posedness and solution regularity of an evolution equation with non-positive type variable-exponent memory, which describes multiscale viscoelasticity in materials with memory. The perturbation method is applied for model transformation, based on which the well-posedness is proved. Then the weighted solution regularity is derived, where the initial singularity is characterized by the initial value of variable exponent.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"171 \",\"pages\":\"Article 109640\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925001909\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925001909","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了描述具有记忆材料多尺度粘弹性的非正型变指数记忆演化方程的适定性和解正则性。采用摄动法对模型进行变换,并在此基础上证明了模型的适定性。然后导出了加权解的正则性,其中初始奇异性以变指数的初始值为特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of evolution equation with variable-exponent memory modeling multiscale viscoelasticity
We investigate the well-posedness and solution regularity of an evolution equation with non-positive type variable-exponent memory, which describes multiscale viscoelasticity in materials with memory. The perturbation method is applied for model transformation, based on which the well-posedness is proved. Then the weighted solution regularity is derived, where the initial singularity is characterized by the initial value of variable exponent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信