核糖核酸酶在孟德尔病:表征和洞察从模式生物

IF 6.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Annasha Dutta , Anastasiia Zaremba , Paulina Jackowiak
{"title":"核糖核酸酶在孟德尔病:表征和洞察从模式生物","authors":"Annasha Dutta ,&nbsp;Anastasiia Zaremba ,&nbsp;Paulina Jackowiak","doi":"10.1016/j.gendis.2025.101613","DOIUrl":null,"url":null,"abstract":"<div><div>Ribonucleases (RNases), essential for RNA metabolism, are implicated in human diseases, including neurodevelopmental, developmental, hematopoietic and other dysfunctions through mutations that disrupt their enzymatic functions. Exploring RNase mutations across organisms offers insights into Mendelian diseases, facilitating molecular dissection of pathological pathways and therapeutic development. By employing model organisms, our analysis underscores the evolutionary conservation of RNase genes, facilitating deeper insights into disease mechanisms. These models are vital for uncovering rare molecular dysfunctions and potential therapeutic targets, demonstrating the effectiveness of integrated research approaches in addressing complex genetic disorders. Drawing from phylogenetic analyses, literature survey, and databases documenting the effects of human disease-causing mutations, the review highlights the significance and advantages of employing model organisms to study specific Mendelian disorders.</div></div>","PeriodicalId":12689,"journal":{"name":"Genes & Diseases","volume":"12 5","pages":"Article 101613"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ribonucleases in Mendelian disease: Characterization and insight from model organisms\",\"authors\":\"Annasha Dutta ,&nbsp;Anastasiia Zaremba ,&nbsp;Paulina Jackowiak\",\"doi\":\"10.1016/j.gendis.2025.101613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ribonucleases (RNases), essential for RNA metabolism, are implicated in human diseases, including neurodevelopmental, developmental, hematopoietic and other dysfunctions through mutations that disrupt their enzymatic functions. Exploring RNase mutations across organisms offers insights into Mendelian diseases, facilitating molecular dissection of pathological pathways and therapeutic development. By employing model organisms, our analysis underscores the evolutionary conservation of RNase genes, facilitating deeper insights into disease mechanisms. These models are vital for uncovering rare molecular dysfunctions and potential therapeutic targets, demonstrating the effectiveness of integrated research approaches in addressing complex genetic disorders. Drawing from phylogenetic analyses, literature survey, and databases documenting the effects of human disease-causing mutations, the review highlights the significance and advantages of employing model organisms to study specific Mendelian disorders.</div></div>\",\"PeriodicalId\":12689,\"journal\":{\"name\":\"Genes & Diseases\",\"volume\":\"12 5\",\"pages\":\"Article 101613\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352304225001023\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & Diseases","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352304225001023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

核糖核酸酶(rnase)是RNA代谢所必需的,通过破坏其酶功能的突变与人类疾病有关,包括神经发育、发育、造血和其他功能障碍。探索跨生物体的RNase突变提供了对孟德尔疾病的见解,促进了病理途径的分子解剖和治疗开发。通过使用模式生物,我们的分析强调了RNase基因的进化保护,促进了对疾病机制的更深入了解。这些模型对于发现罕见的分子功能障碍和潜在的治疗靶点至关重要,证明了综合研究方法在解决复杂遗传疾病方面的有效性。从系统发育分析、文献调查和记录人类致病突变影响的数据库中,综述强调了利用模式生物研究特定孟德尔疾病的重要性和优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ribonucleases in Mendelian disease: Characterization and insight from model organisms
Ribonucleases (RNases), essential for RNA metabolism, are implicated in human diseases, including neurodevelopmental, developmental, hematopoietic and other dysfunctions through mutations that disrupt their enzymatic functions. Exploring RNase mutations across organisms offers insights into Mendelian diseases, facilitating molecular dissection of pathological pathways and therapeutic development. By employing model organisms, our analysis underscores the evolutionary conservation of RNase genes, facilitating deeper insights into disease mechanisms. These models are vital for uncovering rare molecular dysfunctions and potential therapeutic targets, demonstrating the effectiveness of integrated research approaches in addressing complex genetic disorders. Drawing from phylogenetic analyses, literature survey, and databases documenting the effects of human disease-causing mutations, the review highlights the significance and advantages of employing model organisms to study specific Mendelian disorders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes & Diseases
Genes & Diseases Multiple-
CiteScore
7.30
自引率
0.00%
发文量
347
审稿时长
49 days
期刊介绍: Genes & Diseases is an international journal for molecular and translational medicine. The journal primarily focuses on publishing investigations on the molecular bases and experimental therapeutics of human diseases. Publication formats include full length research article, review article, short communication, correspondence, perspectives, commentary, views on news, and research watch. Aims and Scopes Genes & Diseases publishes rigorously peer-reviewed and high quality original articles and authoritative reviews that focus on the molecular bases of human diseases. Emphasis will be placed on hypothesis-driven, mechanistic studies relevant to pathogenesis and/or experimental therapeutics of human diseases. The journal has worldwide authorship, and a broad scope in basic and translational biomedical research of molecular biology, molecular genetics, and cell biology, including but not limited to cell proliferation and apoptosis, signal transduction, stem cell biology, developmental biology, gene regulation and epigenetics, cancer biology, immunity and infection, neuroscience, disease-specific animal models, gene and cell-based therapies, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信