β-Ga2O3−xSx增强光学性质的DFT研究

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
G.B. Eshonqulov , A.A. Meyliyeva , Sh. U. Yuldashev , G.R. Berdiyorov
{"title":"β-Ga2O3−xSx增强光学性质的DFT研究","authors":"G.B. Eshonqulov ,&nbsp;A.A. Meyliyeva ,&nbsp;Sh. U. Yuldashev ,&nbsp;G.R. Berdiyorov","doi":"10.1016/j.physb.2025.417367","DOIUrl":null,"url":null,"abstract":"<div><div>Gallium oxide (Ga<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>) is a promising material for ultraviolet optoelectronic applications due to its desirable properties, such as a large band gap, decent charge mobility, and high breakdown electrical characteristics. By reducing the band gap of the material, its applicability can be extended beyond ultraviolet power applications. Here, we conduct systematic density functional theory calculations to study the effect of sulfur doping on the electronic and optical properties of <span><math><mi>β</mi></math></span>-Ga<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>. We find that the band gap of the material decreases with increasing sulfur content (from 4.81 eV to 1.59 eV), accompanied by symmetric shifts in both the valence-band offset and the conduction-band edge. Consequently, the absorption intensity in the visible and UV ranges of the spectrum increases by more than an order of magnitude, depending on the level of doping, with a clear red shift. The present predictive modeling can be useful for developing Ga<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-based materials for optoelectronic applications.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"714 ","pages":"Article 417367"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced optical properties of β-Ga2O3−xSx: A DFT study\",\"authors\":\"G.B. Eshonqulov ,&nbsp;A.A. Meyliyeva ,&nbsp;Sh. U. Yuldashev ,&nbsp;G.R. Berdiyorov\",\"doi\":\"10.1016/j.physb.2025.417367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gallium oxide (Ga<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>) is a promising material for ultraviolet optoelectronic applications due to its desirable properties, such as a large band gap, decent charge mobility, and high breakdown electrical characteristics. By reducing the band gap of the material, its applicability can be extended beyond ultraviolet power applications. Here, we conduct systematic density functional theory calculations to study the effect of sulfur doping on the electronic and optical properties of <span><math><mi>β</mi></math></span>-Ga<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>. We find that the band gap of the material decreases with increasing sulfur content (from 4.81 eV to 1.59 eV), accompanied by symmetric shifts in both the valence-band offset and the conduction-band edge. Consequently, the absorption intensity in the visible and UV ranges of the spectrum increases by more than an order of magnitude, depending on the level of doping, with a clear red shift. The present predictive modeling can be useful for developing Ga<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-based materials for optoelectronic applications.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"714 \",\"pages\":\"Article 417367\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625004843\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625004843","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

氧化镓(Ga2O3)具有大的带隙、良好的电荷迁移率和高的击穿电特性,是一种很有前途的紫外光电材料。通过减少材料的带隙,其适用性可以扩展到紫外线电源以外的应用。本文通过系统的密度泛函理论计算,研究了硫掺杂对β-Ga2O3电子和光学性质的影响。我们发现材料的带隙随着硫含量的增加而减小(从4.81 eV到1.59 eV),并伴有价带偏移和导带边缘的对称位移。因此,在可见光和紫外光谱范围内的吸收强度增加了一个数量级以上,这取决于掺杂的水平,具有明显的红移。本文的预测模型可用于开发光电应用的ga2o3基材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced optical properties of β-Ga2O3−xSx: A DFT study
Gallium oxide (Ga2O3) is a promising material for ultraviolet optoelectronic applications due to its desirable properties, such as a large band gap, decent charge mobility, and high breakdown electrical characteristics. By reducing the band gap of the material, its applicability can be extended beyond ultraviolet power applications. Here, we conduct systematic density functional theory calculations to study the effect of sulfur doping on the electronic and optical properties of β-Ga2O3. We find that the band gap of the material decreases with increasing sulfur content (from 4.81 eV to 1.59 eV), accompanied by symmetric shifts in both the valence-band offset and the conduction-band edge. Consequently, the absorption intensity in the visible and UV ranges of the spectrum increases by more than an order of magnitude, depending on the level of doping, with a clear red shift. The present predictive modeling can be useful for developing Ga2O3-based materials for optoelectronic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信