Bruno Salezze Vieira , Eduardo Machado Silva , Antônio Augusto Chaves
{"title":"手术室综合调度优化的随机密钥算法","authors":"Bruno Salezze Vieira , Eduardo Machado Silva , Antônio Augusto Chaves","doi":"10.1016/j.asoc.2025.113368","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient surgery room scheduling is essential for hospital efficiency, patient satisfaction, and resource utilization. This study addresses the challenge as a combinatorial optimization problem that incorporates multi-room scheduling, equipment scheduling, and complex availability constraints for rooms, patients, and surgeons, facilitating rescheduling and enhancing operational flexibility. To solve such a problem, we introduce multiple algorithms based on a Random-Key Optimizer (RKO), coupled with relaxed formulations to compute lower bounds efficiently, rigorously tested on literature and new, real-world-based instances. The RKO approach decouples the problem from the solving algorithms through an encoding/decoding layer, making it possible to use the same solving algorithms to multiple room scheduling problems case studies from multiple hospitals, given the particularities of each place, even other optimization problems. Among the possible RKO algorithms, we design the heuristics Biased Random-Key Genetic Algorithm with <span><math><mi>Q</mi></math></span>-Learning, Simulated Annealing, and Iterated Local Search for use within an RKO framework, employing a single decoder function. The proposed heuristics, complemented by the lower-bound formulations, provided optimal gaps for evaluating the effectiveness of the heuristic results. Our results demonstrate significant lower- and upper-bound improvements for the literature instances, notably in proving one optimal result. Our strong statistical analysis shows the effectiveness of our implemented heuristic search mechanisms. Furthermore, the best-proposed heuristic efficiently generates schedules for the newly introduced instances, even in highly constrained scenarios. This research offers valuable insights and practical solutions for improving surgery scheduling processes, delivering tangible benefits to hospitals by optimizing resource allocation, reducing patient wait times, and enhancing overall operational efficiency.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"180 ","pages":"Article 113368"},"PeriodicalIF":7.2000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random-key algorithms for optimizing integrated Operating Room Scheduling\",\"authors\":\"Bruno Salezze Vieira , Eduardo Machado Silva , Antônio Augusto Chaves\",\"doi\":\"10.1016/j.asoc.2025.113368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient surgery room scheduling is essential for hospital efficiency, patient satisfaction, and resource utilization. This study addresses the challenge as a combinatorial optimization problem that incorporates multi-room scheduling, equipment scheduling, and complex availability constraints for rooms, patients, and surgeons, facilitating rescheduling and enhancing operational flexibility. To solve such a problem, we introduce multiple algorithms based on a Random-Key Optimizer (RKO), coupled with relaxed formulations to compute lower bounds efficiently, rigorously tested on literature and new, real-world-based instances. The RKO approach decouples the problem from the solving algorithms through an encoding/decoding layer, making it possible to use the same solving algorithms to multiple room scheduling problems case studies from multiple hospitals, given the particularities of each place, even other optimization problems. Among the possible RKO algorithms, we design the heuristics Biased Random-Key Genetic Algorithm with <span><math><mi>Q</mi></math></span>-Learning, Simulated Annealing, and Iterated Local Search for use within an RKO framework, employing a single decoder function. The proposed heuristics, complemented by the lower-bound formulations, provided optimal gaps for evaluating the effectiveness of the heuristic results. Our results demonstrate significant lower- and upper-bound improvements for the literature instances, notably in proving one optimal result. Our strong statistical analysis shows the effectiveness of our implemented heuristic search mechanisms. Furthermore, the best-proposed heuristic efficiently generates schedules for the newly introduced instances, even in highly constrained scenarios. This research offers valuable insights and practical solutions for improving surgery scheduling processes, delivering tangible benefits to hospitals by optimizing resource allocation, reducing patient wait times, and enhancing overall operational efficiency.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":\"180 \",\"pages\":\"Article 113368\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494625006799\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625006799","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Random-key algorithms for optimizing integrated Operating Room Scheduling
Efficient surgery room scheduling is essential for hospital efficiency, patient satisfaction, and resource utilization. This study addresses the challenge as a combinatorial optimization problem that incorporates multi-room scheduling, equipment scheduling, and complex availability constraints for rooms, patients, and surgeons, facilitating rescheduling and enhancing operational flexibility. To solve such a problem, we introduce multiple algorithms based on a Random-Key Optimizer (RKO), coupled with relaxed formulations to compute lower bounds efficiently, rigorously tested on literature and new, real-world-based instances. The RKO approach decouples the problem from the solving algorithms through an encoding/decoding layer, making it possible to use the same solving algorithms to multiple room scheduling problems case studies from multiple hospitals, given the particularities of each place, even other optimization problems. Among the possible RKO algorithms, we design the heuristics Biased Random-Key Genetic Algorithm with -Learning, Simulated Annealing, and Iterated Local Search for use within an RKO framework, employing a single decoder function. The proposed heuristics, complemented by the lower-bound formulations, provided optimal gaps for evaluating the effectiveness of the heuristic results. Our results demonstrate significant lower- and upper-bound improvements for the literature instances, notably in proving one optimal result. Our strong statistical analysis shows the effectiveness of our implemented heuristic search mechanisms. Furthermore, the best-proposed heuristic efficiently generates schedules for the newly introduced instances, even in highly constrained scenarios. This research offers valuable insights and practical solutions for improving surgery scheduling processes, delivering tangible benefits to hospitals by optimizing resource allocation, reducing patient wait times, and enhancing overall operational efficiency.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.