一种类似同步加速器的水波泵浦环形谐振器

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Isis Vivanco, Alexander Egli, Bruce Cartwright, Juan F. Marín, Leonardo Gordillo
{"title":"一种类似同步加速器的水波泵浦环形谐振器","authors":"Isis Vivanco, Alexander Egli, Bruce Cartwright, Juan F. Marín, Leonardo Gordillo","doi":"10.1073/pnas.2414587122","DOIUrl":null,"url":null,"abstract":"The wave-like behavior of matter in quantum physics has spurred insightful analogies between the dynamics of particles and waves in classical systems. In this study, drawing inspiration from synchrotrons that resonate to accelerate ions along a closed path, we introduce a synchrowave: a waveguide designed to generate and sustain traveling water waves within an annular channel. In analogy to unavoidable energy losses in conventional particle accelerators due to electromagnetic radiation and inelastic collisions, the system displays undesired water-wave dampening, which we address through the synchronized action of underwater wavemakers. Our analogies extend the resonance mechanisms of synchrotrons to generate and sustain gravity waves in closed waveguides efficiently. A proof-of-concept experiment at a laboratory scale demonstrates the unique capability of this technique to build up anomalously large traveling waves displaying a flat response in the long-wave limit. Besides quantifying the performance of wave generation, our findings offer a framework for both industrial and computational applications, opening up unexplored possibilities in hydraulics, coastal science, and engineering. In a broader context, our experimental apparatus and methods highlight the versatility of a simple yet powerful concept: a closed-path continuous-energy-pumping scheme to effectively harvest prominent resonant responses within wave-supporting systems displaying weak dissipation.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"6 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A synchrotron-like pumped ring resonator for water waves\",\"authors\":\"Isis Vivanco, Alexander Egli, Bruce Cartwright, Juan F. Marín, Leonardo Gordillo\",\"doi\":\"10.1073/pnas.2414587122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The wave-like behavior of matter in quantum physics has spurred insightful analogies between the dynamics of particles and waves in classical systems. In this study, drawing inspiration from synchrotrons that resonate to accelerate ions along a closed path, we introduce a synchrowave: a waveguide designed to generate and sustain traveling water waves within an annular channel. In analogy to unavoidable energy losses in conventional particle accelerators due to electromagnetic radiation and inelastic collisions, the system displays undesired water-wave dampening, which we address through the synchronized action of underwater wavemakers. Our analogies extend the resonance mechanisms of synchrotrons to generate and sustain gravity waves in closed waveguides efficiently. A proof-of-concept experiment at a laboratory scale demonstrates the unique capability of this technique to build up anomalously large traveling waves displaying a flat response in the long-wave limit. Besides quantifying the performance of wave generation, our findings offer a framework for both industrial and computational applications, opening up unexplored possibilities in hydraulics, coastal science, and engineering. In a broader context, our experimental apparatus and methods highlight the versatility of a simple yet powerful concept: a closed-path continuous-energy-pumping scheme to effectively harvest prominent resonant responses within wave-supporting systems displaying weak dissipation.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2414587122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2414587122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

量子物理学中物质的波状行为激发了粒子动力学与经典系统中的波之间的深刻类比。在这项研究中,从同步加速器的共振中获得灵感,沿着封闭的路径加速离子,我们引入了一种同步波:一种设计用于在环形通道内产生和维持行进水波的波导。与传统粒子加速器由于电磁辐射和非弹性碰撞而不可避免的能量损失类似,该系统显示出不希望的水波衰减,我们通过水下波发生器的同步作用来解决这个问题。我们的类比扩展了同步加速器的共振机制,以有效地在闭合波导中产生和维持重力波。实验室规模的概念验证实验证明了该技术的独特能力,可以建立在长波极限下显示平坦响应的异常大行波。除了量化波浪产生的性能外,我们的发现还为工业和计算应用提供了一个框架,开辟了水力学、海岸科学和工程领域未开发的可能性。在更广泛的背景下,我们的实验设备和方法突出了一个简单而强大的概念的多功能性:一个闭合路径连续能量泵浦方案,有效地收集波支撑系统中显示弱耗散的突出谐振响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A synchrotron-like pumped ring resonator for water waves
The wave-like behavior of matter in quantum physics has spurred insightful analogies between the dynamics of particles and waves in classical systems. In this study, drawing inspiration from synchrotrons that resonate to accelerate ions along a closed path, we introduce a synchrowave: a waveguide designed to generate and sustain traveling water waves within an annular channel. In analogy to unavoidable energy losses in conventional particle accelerators due to electromagnetic radiation and inelastic collisions, the system displays undesired water-wave dampening, which we address through the synchronized action of underwater wavemakers. Our analogies extend the resonance mechanisms of synchrotrons to generate and sustain gravity waves in closed waveguides efficiently. A proof-of-concept experiment at a laboratory scale demonstrates the unique capability of this technique to build up anomalously large traveling waves displaying a flat response in the long-wave limit. Besides quantifying the performance of wave generation, our findings offer a framework for both industrial and computational applications, opening up unexplored possibilities in hydraulics, coastal science, and engineering. In a broader context, our experimental apparatus and methods highlight the versatility of a simple yet powerful concept: a closed-path continuous-energy-pumping scheme to effectively harvest prominent resonant responses within wave-supporting systems displaying weak dissipation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信