基于第一性原理的极化效应调制β-Ga2O3/4H-SiC异质结的电子结构

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Guangzheng Zhang , Shilin Dong , Lin Guo , Chenghao Li , Xinyu Wang , Gongming Xin
{"title":"基于第一性原理的极化效应调制β-Ga2O3/4H-SiC异质结的电子结构","authors":"Guangzheng Zhang ,&nbsp;Shilin Dong ,&nbsp;Lin Guo ,&nbsp;Chenghao Li ,&nbsp;Xinyu Wang ,&nbsp;Gongming Xin","doi":"10.1016/j.apsusc.2025.163817","DOIUrl":null,"url":null,"abstract":"<div><div>While beta-gallium oxide/4H-silicon carbide (<em>β</em>-Ga<sub>2</sub>O<sub>3</sub>/4H-SiC) heterojunctions hold promise for high-performance and heat-dissipation-efficient high-power electronics, the atomic-scale mechanisms by which polarization effects govern interfacial charge dynamics and band alignment remain unresolved, limiting their performance optimization. Here, we employ first-principles calculations to systematically investigate six thermodynamically stable <em>β</em>-Ga<sub>2</sub>O<sub>3</sub> (001)/4H-SiC (0001) heterojunction models with distinct atomic terminations. Formation energy (<em>E<sub>f</sub></em>) analysis reveals that oxygen-rich interfaces exhibit significantly enhanced thermodynamic stability, with the O-C and O-Si interfaces demonstrating formation energies of −0.419 eV/Å<sup>2</sup> and −0.603 eV/Å<sup>2</sup>, respectively, due to strong covalent bonding between O and C/Si atoms. Polarization-induced interfacial charge redistribution critically modulates internal electric fields (<em>E<sub>int</sub></em>) and band bending: Si-terminated interfaces exhibit electron depletion with <em>E<sub>int</sub></em> oriented from 4H-SiC to <em>β</em>-Ga<sub>2</sub>O<sub>3</sub>, while C-terminated interfaces show charge accumulation tendency and reversed <em>E<sub>int</sub></em>. Notably, <em>β</em>-Ga<sub>2</sub>O<sub>3</sub> (001)/4H-SiC (0001) heterojunction exhibit type-I band alignments, with conduction band offsets (CBOs) of Si-terminated interfaces ranging from 0.47 to 0.76 eV, effectively suppressing electron leakage compared to C-terminated interfaces. These findings demonstrate a polarization-engineering strategy to design <em>β</em>-Ga<sub>2</sub>O<sub>3</sub>/4H-SiC heterojunctions with precisely electronic structure, thereby accelerating the development of <em>β</em>-Ga<sub>2</sub>O<sub>3</sub>-based power devices.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"709 ","pages":"Article 163817"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulated electronic structure of β-Ga2O3/4H-SiC heterojunctions by polarization effect from first principles\",\"authors\":\"Guangzheng Zhang ,&nbsp;Shilin Dong ,&nbsp;Lin Guo ,&nbsp;Chenghao Li ,&nbsp;Xinyu Wang ,&nbsp;Gongming Xin\",\"doi\":\"10.1016/j.apsusc.2025.163817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>While beta-gallium oxide/4H-silicon carbide (<em>β</em>-Ga<sub>2</sub>O<sub>3</sub>/4H-SiC) heterojunctions hold promise for high-performance and heat-dissipation-efficient high-power electronics, the atomic-scale mechanisms by which polarization effects govern interfacial charge dynamics and band alignment remain unresolved, limiting their performance optimization. Here, we employ first-principles calculations to systematically investigate six thermodynamically stable <em>β</em>-Ga<sub>2</sub>O<sub>3</sub> (001)/4H-SiC (0001) heterojunction models with distinct atomic terminations. Formation energy (<em>E<sub>f</sub></em>) analysis reveals that oxygen-rich interfaces exhibit significantly enhanced thermodynamic stability, with the O-C and O-Si interfaces demonstrating formation energies of −0.419 eV/Å<sup>2</sup> and −0.603 eV/Å<sup>2</sup>, respectively, due to strong covalent bonding between O and C/Si atoms. Polarization-induced interfacial charge redistribution critically modulates internal electric fields (<em>E<sub>int</sub></em>) and band bending: Si-terminated interfaces exhibit electron depletion with <em>E<sub>int</sub></em> oriented from 4H-SiC to <em>β</em>-Ga<sub>2</sub>O<sub>3</sub>, while C-terminated interfaces show charge accumulation tendency and reversed <em>E<sub>int</sub></em>. Notably, <em>β</em>-Ga<sub>2</sub>O<sub>3</sub> (001)/4H-SiC (0001) heterojunction exhibit type-I band alignments, with conduction band offsets (CBOs) of Si-terminated interfaces ranging from 0.47 to 0.76 eV, effectively suppressing electron leakage compared to C-terminated interfaces. These findings demonstrate a polarization-engineering strategy to design <em>β</em>-Ga<sub>2</sub>O<sub>3</sub>/4H-SiC heterojunctions with precisely electronic structure, thereby accelerating the development of <em>β</em>-Ga<sub>2</sub>O<sub>3</sub>-based power devices.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"709 \",\"pages\":\"Article 163817\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433225015326\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225015326","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

虽然β-氧化镓/ 4h -碳化硅(β-Ga2O3/4H-SiC)异质结有望用于高性能和散热效率高的大功率电子器件,但极化效应控制界面电荷动力学和能带排列的原子尺度机制仍未解决,限制了它们的性能优化。在这里,我们采用第一性原理计算系统地研究了六种具有不同原子末端的热力学稳定的β-Ga2O3 (001)/4H-SiC(0001)异质结模型。生成能(Ef)分析表明,富氧界面的热力学稳定性显著增强,O-C和O-Si界面的生成能分别为- 0.419 eV/Å2和- 0.603 eV/Å2,这是由于O和C/Si原子之间的强共价键作用。极化诱导的界面电荷重分布对内部电场(Eint)和能带弯曲有重要的调节作用:si端界面表现出电子耗散,Eint从4H-SiC取向到β-Ga2O3取向,而c端界面表现出电荷积累趋势,Eint反转。值得注意的是,β-Ga2O3 (001)/4H-SiC(0001)异质结表现出i型带对位,si端界面的导带偏移(cbo)在0.47 ~ 0.76 eV之间,与c端界面相比,有效地抑制了电子泄漏。这些发现为设计具有精确电子结构的β-Ga2O3/4H-SiC异质结提供了极化工程策略,从而加速了β- ga2o3基功率器件的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modulated electronic structure of β-Ga2O3/4H-SiC heterojunctions by polarization effect from first principles

Modulated electronic structure of β-Ga2O3/4H-SiC heterojunctions by polarization effect from first principles

Modulated electronic structure of β-Ga2O3/4H-SiC heterojunctions by polarization effect from first principles
While beta-gallium oxide/4H-silicon carbide (β-Ga2O3/4H-SiC) heterojunctions hold promise for high-performance and heat-dissipation-efficient high-power electronics, the atomic-scale mechanisms by which polarization effects govern interfacial charge dynamics and band alignment remain unresolved, limiting their performance optimization. Here, we employ first-principles calculations to systematically investigate six thermodynamically stable β-Ga2O3 (001)/4H-SiC (0001) heterojunction models with distinct atomic terminations. Formation energy (Ef) analysis reveals that oxygen-rich interfaces exhibit significantly enhanced thermodynamic stability, with the O-C and O-Si interfaces demonstrating formation energies of −0.419 eV/Å2 and −0.603 eV/Å2, respectively, due to strong covalent bonding between O and C/Si atoms. Polarization-induced interfacial charge redistribution critically modulates internal electric fields (Eint) and band bending: Si-terminated interfaces exhibit electron depletion with Eint oriented from 4H-SiC to β-Ga2O3, while C-terminated interfaces show charge accumulation tendency and reversed Eint. Notably, β-Ga2O3 (001)/4H-SiC (0001) heterojunction exhibit type-I band alignments, with conduction band offsets (CBOs) of Si-terminated interfaces ranging from 0.47 to 0.76 eV, effectively suppressing electron leakage compared to C-terminated interfaces. These findings demonstrate a polarization-engineering strategy to design β-Ga2O3/4H-SiC heterojunctions with precisely electronic structure, thereby accelerating the development of β-Ga2O3-based power devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信