通过原子模拟研究Ti/Al对CoNiFeAlTi多主元素合金中L1₂纳米析出和变形行为的影响

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Amin Esfandiarpour, Anshul D.S. Parmar, Silvia Bonfanti, Pawel Sobkowicz, Byeong-Joo Lee, Mikko Alava
{"title":"通过原子模拟研究Ti/Al对CoNiFeAlTi多主元素合金中L1₂纳米析出和变形行为的影响","authors":"Amin Esfandiarpour, Anshul D.S. Parmar, Silvia Bonfanti, Pawel Sobkowicz, Byeong-Joo Lee, Mikko Alava","doi":"10.1016/j.jallcom.2025.181580","DOIUrl":null,"url":null,"abstract":"Recent experimental studies on CoNi-based multi-principal element alloys (MPEAs) have demonstrated high strength and ductility, attributed to the formation of stable L1<sub>2</sub> nanoscale precipitates. However, the fundamental mechanisms behind such impressive properties in these complex alloys are not well understood. In this work, we investigate the effects of Ti and Al concentrations on the formation of L1<sub>2</sub> precipitates in (CoNiFe)<sub>84</sub>(Al<sub>8</sub>Ti<sub>8</sub>), (CoNiFe)<sub>86</sub>(Al<sub>7</sub>Ti<sub>7</sub>), (CoNiFe)<sub>88</sub>(Al<sub>6</sub>Ti<sub>6</sub>), and (CoNiFe)<sub>94</sub>(Al<sub>4</sub>Ti<sub>2</sub>) MPEAs using hybrid molecular dynamics/Monte Carlo (MD/MC) simulations and a developed MEAM interatomic potential for the CoNiFeTiAl system. Additionally, we study the effect of L1<sub>2</sub> precipitation on the mechanical properties and stacking fault energy of these MPEAs using MD. Our hybrid MD/MC simulations show that (CoNiFe)<sub>86</sub>(Al<sub>7</sub>Ti<sub>7</sub>) alloy exhibits the highest amount of L1<sub>2</sub> nanoprecipitates. We find that L1<sub>2</sub> precipitation increases the stacking fault energy, with higher Al and Ti contents leading to greater increases. Tensile simulations reveal that L1<sub>2</sub> precipitates enhance yield strength, with alloys exhibiting higher precipitation showing increased flow stress. We also investigate dislocation-nanoprecipitate interactions with different precipitate sizes in (CoNiFe)<sub>86</sub>(Al<sub>7</sub>Ti<sub>7</sub>) alloy. Larger nanoprecipitate sizes result in stronger dislocation pinning. Dislocation-precipitate interactions indicate that dislocations predominantly shear through 4–8 nm precipitates instead of looping around them (Orowan mechanism), which enhances strength while maintaining good ductility. Although the lattice mismatch between the L1<sub>2</sub> nanoprecipitate and the matrix is low (0.139 %), the significant difference in stacking fault energy between the L1<sub>2</sub> nanoprecipitate and the matrix results in stronger dislocation pinning. This fundamental understanding can guide the compositional design of MPEAs with tailored properties by controlling nanoscale precipitation.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"591 1","pages":"181580"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the impact of Ti/Al on L1₂ nanoprecipitation and deformation behavior in CoNiFeAlTi multi-principal element alloys through atomistic simulations\",\"authors\":\"Amin Esfandiarpour, Anshul D.S. Parmar, Silvia Bonfanti, Pawel Sobkowicz, Byeong-Joo Lee, Mikko Alava\",\"doi\":\"10.1016/j.jallcom.2025.181580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent experimental studies on CoNi-based multi-principal element alloys (MPEAs) have demonstrated high strength and ductility, attributed to the formation of stable L1<sub>2</sub> nanoscale precipitates. However, the fundamental mechanisms behind such impressive properties in these complex alloys are not well understood. In this work, we investigate the effects of Ti and Al concentrations on the formation of L1<sub>2</sub> precipitates in (CoNiFe)<sub>84</sub>(Al<sub>8</sub>Ti<sub>8</sub>), (CoNiFe)<sub>86</sub>(Al<sub>7</sub>Ti<sub>7</sub>), (CoNiFe)<sub>88</sub>(Al<sub>6</sub>Ti<sub>6</sub>), and (CoNiFe)<sub>94</sub>(Al<sub>4</sub>Ti<sub>2</sub>) MPEAs using hybrid molecular dynamics/Monte Carlo (MD/MC) simulations and a developed MEAM interatomic potential for the CoNiFeTiAl system. Additionally, we study the effect of L1<sub>2</sub> precipitation on the mechanical properties and stacking fault energy of these MPEAs using MD. Our hybrid MD/MC simulations show that (CoNiFe)<sub>86</sub>(Al<sub>7</sub>Ti<sub>7</sub>) alloy exhibits the highest amount of L1<sub>2</sub> nanoprecipitates. We find that L1<sub>2</sub> precipitation increases the stacking fault energy, with higher Al and Ti contents leading to greater increases. Tensile simulations reveal that L1<sub>2</sub> precipitates enhance yield strength, with alloys exhibiting higher precipitation showing increased flow stress. We also investigate dislocation-nanoprecipitate interactions with different precipitate sizes in (CoNiFe)<sub>86</sub>(Al<sub>7</sub>Ti<sub>7</sub>) alloy. Larger nanoprecipitate sizes result in stronger dislocation pinning. Dislocation-precipitate interactions indicate that dislocations predominantly shear through 4–8 nm precipitates instead of looping around them (Orowan mechanism), which enhances strength while maintaining good ductility. Although the lattice mismatch between the L1<sub>2</sub> nanoprecipitate and the matrix is low (0.139 %), the significant difference in stacking fault energy between the L1<sub>2</sub> nanoprecipitate and the matrix results in stronger dislocation pinning. This fundamental understanding can guide the compositional design of MPEAs with tailored properties by controlling nanoscale precipitation.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"591 1\",\"pages\":\"181580\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.181580\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.181580","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

最近的实验研究表明,镍基多主元素合金(mpea)具有较高的强度和延展性,这归功于稳定的L12纳米级析出物的形成。然而,这些复杂合金如此令人印象深刻的性能背后的基本机制还没有得到很好的理解。在这项工作中,我们研究了Ti和Al浓度对(CoNiFe)84(Al8Ti8), (CoNiFe)86(Al7Ti7), (CoNiFe)88(Al6Ti6)和(CoNiFe)94(Al4Ti2) MPEAs中L12沉淀形成的影响,使用混合分子动力学/蒙特卡罗(MD/MC)模拟和开发了CoNiFe系统的MEAM原子间电位。此外,我们利用MD研究了L12析出对mpea力学性能和层错能的影响。我们的混合MD/MC模拟表明,(CoNiFe)86(Al7Ti7)合金的L12纳米沉淀物含量最高。发现L12的析出增加了层错能,且Al和Ti含量越高,层错能的增加越大。拉伸模拟表明,L12析出物提高了合金的屈服强度,析出物越多,合金的流动应力越大。我们还研究了(CoNiFe)86(Al7Ti7)合金中不同析出物尺寸的位错-纳米沉淀的相互作用。较大的纳米沉淀尺寸导致更强的位错钉住。位错与析出相的相互作用表明,位错主要剪切4-8 nm析出相,而不是围绕它们循环(Orowan机制),从而在保持良好延性的同时提高了强度。虽然L12纳米沉淀与基体之间的晶格失配较小(0.139 %),但由于L12纳米沉淀与基体之间的层错能存在显著差异,导致了更强的位错钉住。这种基本的理解可以通过控制纳米尺度的沉淀来指导具有定制性能的mpea的组成设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the impact of Ti/Al on L1₂ nanoprecipitation and deformation behavior in CoNiFeAlTi multi-principal element alloys through atomistic simulations
Recent experimental studies on CoNi-based multi-principal element alloys (MPEAs) have demonstrated high strength and ductility, attributed to the formation of stable L12 nanoscale precipitates. However, the fundamental mechanisms behind such impressive properties in these complex alloys are not well understood. In this work, we investigate the effects of Ti and Al concentrations on the formation of L12 precipitates in (CoNiFe)84(Al8Ti8), (CoNiFe)86(Al7Ti7), (CoNiFe)88(Al6Ti6), and (CoNiFe)94(Al4Ti2) MPEAs using hybrid molecular dynamics/Monte Carlo (MD/MC) simulations and a developed MEAM interatomic potential for the CoNiFeTiAl system. Additionally, we study the effect of L12 precipitation on the mechanical properties and stacking fault energy of these MPEAs using MD. Our hybrid MD/MC simulations show that (CoNiFe)86(Al7Ti7) alloy exhibits the highest amount of L12 nanoprecipitates. We find that L12 precipitation increases the stacking fault energy, with higher Al and Ti contents leading to greater increases. Tensile simulations reveal that L12 precipitates enhance yield strength, with alloys exhibiting higher precipitation showing increased flow stress. We also investigate dislocation-nanoprecipitate interactions with different precipitate sizes in (CoNiFe)86(Al7Ti7) alloy. Larger nanoprecipitate sizes result in stronger dislocation pinning. Dislocation-precipitate interactions indicate that dislocations predominantly shear through 4–8 nm precipitates instead of looping around them (Orowan mechanism), which enhances strength while maintaining good ductility. Although the lattice mismatch between the L12 nanoprecipitate and the matrix is low (0.139 %), the significant difference in stacking fault energy between the L12 nanoprecipitate and the matrix results in stronger dislocation pinning. This fundamental understanding can guide the compositional design of MPEAs with tailored properties by controlling nanoscale precipitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信