锆掺杂Co3O4触发点阵氧介导机制增强酸性析氧反应

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xu Zhao, Yiqun Shao, Junjie Cai, Xin Yue* and Shaoming Huang*, 
{"title":"锆掺杂Co3O4触发点阵氧介导机制增强酸性析氧反应","authors":"Xu Zhao,&nbsp;Yiqun Shao,&nbsp;Junjie Cai,&nbsp;Xin Yue* and Shaoming Huang*,&nbsp;","doi":"10.1021/acsami.5c05725","DOIUrl":null,"url":null,"abstract":"<p >Developing high-performance electrocatalysts for the oxygen evolution reaction (OER) in an acidic environment is crucial for practical application in proton exchange membrane water electrolyzers (PEMWE). Due to its favorable performance in an acidic environment, spinel-type Co<sub>3</sub>O<sub>4</sub> has drawn considerable attention, although it remains inferior to precious metal-based electrocatalysts. In this study, we demonstrate that the catalytic activity and stability of Co<sub>3</sub>O<sub>4</sub> can be enhanced by doping Zr into the octahedral interstices of Co<sub>3</sub>O<sub>4</sub>, which effectively triggers the fast lattice oxygen-mediated mechanism (LOM). Thus, as-fabricated Zr-doped Co<sub>3</sub>O<sub>4</sub> (Zr<sub><i>x</i></sub>Co<sub>3–<i>x</i></sub>O<sub>4</sub>) exhibits efficient activity and fast kinetics in an acidic OER. Zr<sub><i>x</i></sub>Co<sub>3–<i>x</i></sub>O<sub>4</sub> demonstrates excellent stability by maintaining a current density of 100 mA cm<sup>–2</sup> for 60 h. In addition, <i>in situ</i> electrochemical tests and theoretical calculations prove that doping Zr into the lattice of Co<sub>3</sub>O<sub>4</sub> can enhance the hybridization of the Co d and O p orbitals. This significantly optimizes the adsorption of intermediates during the AEM pathway and further triggers the LOM pathway, ultimately facilitating the OER process.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 25","pages":"36698–36705"},"PeriodicalIF":8.2000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zirconium-Doped Co3O4 for Enhancing the Acidic Oxygen Evolution Reaction by Triggering the Lattice Oxygen-Mediated Mechanism\",\"authors\":\"Xu Zhao,&nbsp;Yiqun Shao,&nbsp;Junjie Cai,&nbsp;Xin Yue* and Shaoming Huang*,&nbsp;\",\"doi\":\"10.1021/acsami.5c05725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing high-performance electrocatalysts for the oxygen evolution reaction (OER) in an acidic environment is crucial for practical application in proton exchange membrane water electrolyzers (PEMWE). Due to its favorable performance in an acidic environment, spinel-type Co<sub>3</sub>O<sub>4</sub> has drawn considerable attention, although it remains inferior to precious metal-based electrocatalysts. In this study, we demonstrate that the catalytic activity and stability of Co<sub>3</sub>O<sub>4</sub> can be enhanced by doping Zr into the octahedral interstices of Co<sub>3</sub>O<sub>4</sub>, which effectively triggers the fast lattice oxygen-mediated mechanism (LOM). Thus, as-fabricated Zr-doped Co<sub>3</sub>O<sub>4</sub> (Zr<sub><i>x</i></sub>Co<sub>3–<i>x</i></sub>O<sub>4</sub>) exhibits efficient activity and fast kinetics in an acidic OER. Zr<sub><i>x</i></sub>Co<sub>3–<i>x</i></sub>O<sub>4</sub> demonstrates excellent stability by maintaining a current density of 100 mA cm<sup>–2</sup> for 60 h. In addition, <i>in situ</i> electrochemical tests and theoretical calculations prove that doping Zr into the lattice of Co<sub>3</sub>O<sub>4</sub> can enhance the hybridization of the Co d and O p orbitals. This significantly optimizes the adsorption of intermediates during the AEM pathway and further triggers the LOM pathway, ultimately facilitating the OER process.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 25\",\"pages\":\"36698–36705\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c05725\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c05725","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为酸性环境下的析氧反应(OER)开发高性能电催化剂对于质子交换膜水电解槽(PEMWE)的实际应用至关重要。尖晶石型Co3O4由于其在酸性环境中的良好性能而备受关注,尽管其仍不如贵金属基电催化剂。在本研究中,我们证明了通过在Co3O4的八面体间隙中掺杂Zr可以增强Co3O4的催化活性和稳定性,从而有效地触发了快速晶格氧介导机制(LOM)。因此,制备的zr掺杂Co3O4 (ZrxCo3-xO4)在酸性OER中表现出高效的活性和快速的动力学。ZrxCo3-xO4在100 mA cm-2的电流密度下维持60 h,表现出优异的稳定性。此外,原位电化学测试和理论计算证明,在Co3O4晶格中掺杂Zr可以增强Co d和O p轨道的杂化。这显著优化了AEM途径中中间体的吸附,并进一步触发了LOM途径,最终促进了OER过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Zirconium-Doped Co3O4 for Enhancing the Acidic Oxygen Evolution Reaction by Triggering the Lattice Oxygen-Mediated Mechanism

Zirconium-Doped Co3O4 for Enhancing the Acidic Oxygen Evolution Reaction by Triggering the Lattice Oxygen-Mediated Mechanism

Zirconium-Doped Co3O4 for Enhancing the Acidic Oxygen Evolution Reaction by Triggering the Lattice Oxygen-Mediated Mechanism

Developing high-performance electrocatalysts for the oxygen evolution reaction (OER) in an acidic environment is crucial for practical application in proton exchange membrane water electrolyzers (PEMWE). Due to its favorable performance in an acidic environment, spinel-type Co3O4 has drawn considerable attention, although it remains inferior to precious metal-based electrocatalysts. In this study, we demonstrate that the catalytic activity and stability of Co3O4 can be enhanced by doping Zr into the octahedral interstices of Co3O4, which effectively triggers the fast lattice oxygen-mediated mechanism (LOM). Thus, as-fabricated Zr-doped Co3O4 (ZrxCo3–xO4) exhibits efficient activity and fast kinetics in an acidic OER. ZrxCo3–xO4 demonstrates excellent stability by maintaining a current density of 100 mA cm–2 for 60 h. In addition, in situ electrochemical tests and theoretical calculations prove that doping Zr into the lattice of Co3O4 can enhance the hybridization of the Co d and O p orbitals. This significantly optimizes the adsorption of intermediates during the AEM pathway and further triggers the LOM pathway, ultimately facilitating the OER process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信