Xing-Zhou Tang, Chao-Yi Li, Zhi-Jun Huang, Jia-Hui Zhao, Yu-Xi Chen, Nicholas L. Abbott, Juan J. de Pablo, Yan-Qing Lu, Bing-Xiang Li
{"title":"方向在界面处的反射和折射","authors":"Xing-Zhou Tang, Chao-Yi Li, Zhi-Jun Huang, Jia-Hui Zhao, Yu-Xi Chen, Nicholas L. Abbott, Juan J. de Pablo, Yan-Qing Lu, Bing-Xiang Li","doi":"10.1073/pnas.2501488122","DOIUrl":null,"url":null,"abstract":"Reflection and refraction are ubiquitous phenomena with extensive applications, yet minimizing energy loss and information distortion during these processes remains a significant challenge. This study examines the behavior of structurally stable solitons, known as directrons, in nematic liquid crystals interacting with an interface where the director field orientation changes, despite identical physical properties, external potentials, and boundary anchoring in the two regions. During reflection and refraction, the directrons maintain nearly constant structure and velocity, ensuring energy conservation and information integrity. Microscopic analyses of the director field and macroscopic evaluations of effective potential are employed to elucidate the dependence of reflection and refraction probabilities on the directron’s incident angle and the orientation difference across the interface. The findings provide valuable insights into the dynamics of solitary waves in structured liquid crystal systems, offering significant implications for the development of tunable photonic devices, reconfigurable optical systems, and nanoscale material engineering.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"44 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reflection and refraction of directrons at the interface\",\"authors\":\"Xing-Zhou Tang, Chao-Yi Li, Zhi-Jun Huang, Jia-Hui Zhao, Yu-Xi Chen, Nicholas L. Abbott, Juan J. de Pablo, Yan-Qing Lu, Bing-Xiang Li\",\"doi\":\"10.1073/pnas.2501488122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reflection and refraction are ubiquitous phenomena with extensive applications, yet minimizing energy loss and information distortion during these processes remains a significant challenge. This study examines the behavior of structurally stable solitons, known as directrons, in nematic liquid crystals interacting with an interface where the director field orientation changes, despite identical physical properties, external potentials, and boundary anchoring in the two regions. During reflection and refraction, the directrons maintain nearly constant structure and velocity, ensuring energy conservation and information integrity. Microscopic analyses of the director field and macroscopic evaluations of effective potential are employed to elucidate the dependence of reflection and refraction probabilities on the directron’s incident angle and the orientation difference across the interface. The findings provide valuable insights into the dynamics of solitary waves in structured liquid crystal systems, offering significant implications for the development of tunable photonic devices, reconfigurable optical systems, and nanoscale material engineering.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2501488122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2501488122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Reflection and refraction of directrons at the interface
Reflection and refraction are ubiquitous phenomena with extensive applications, yet minimizing energy loss and information distortion during these processes remains a significant challenge. This study examines the behavior of structurally stable solitons, known as directrons, in nematic liquid crystals interacting with an interface where the director field orientation changes, despite identical physical properties, external potentials, and boundary anchoring in the two regions. During reflection and refraction, the directrons maintain nearly constant structure and velocity, ensuring energy conservation and information integrity. Microscopic analyses of the director field and macroscopic evaluations of effective potential are employed to elucidate the dependence of reflection and refraction probabilities on the directron’s incident angle and the orientation difference across the interface. The findings provide valuable insights into the dynamics of solitary waves in structured liquid crystal systems, offering significant implications for the development of tunable photonic devices, reconfigurable optical systems, and nanoscale material engineering.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.