相变Sb₂S₃多层Fabry - Perot器件:一种非易失性可编程多相空间调制的新方法

IF 10 1区 物理与天体物理 Q1 OPTICS
Kun Gao, Feifan Qiang, Zhuonan Jia, Wanqi Yang, Wending Zhang, Lixun Sun, Ting Mei
{"title":"相变Sb₂S₃多层Fabry - Perot器件:一种非易失性可编程多相空间调制的新方法","authors":"Kun Gao, Feifan Qiang, Zhuonan Jia, Wanqi Yang, Wending Zhang, Lixun Sun, Ting Mei","doi":"10.1002/lpor.202401683","DOIUrl":null,"url":null,"abstract":"Nonvolatile reconfiguration of optical device characteristics at the micro‐ and nanoscale is essential for advancing intelligent photonics. In this study, a novel approach to nonvolatile, reprogrammable multiphase modulation is presented using multilayer thin‐film Fabry‐Perot devices that incorporate phase‐change Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub>, facilitating low‐cost customization for diverse applications. These devices are fabricated through thin film deposition and feature a pixelated multilevel phase modulation configuration via intermediate phase states of Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> controlled by laser direct writing. The multilayer structures employ a stratification strategy to control grain size and minimize domain formation in the crystalline Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> films, effectively mitigating refractive index inhomogeneity caused by birefringence. The experiments achieved multilevel phase modulations with a maximum reflectance phase modulation exceeding 1.6π. The resulting multiphase holograms effectively eliminate the twin image effect often encountered in binary‐phase holograms, demonstrating the capability of the devices for holographic image reconstruction. Leveraging the unique properties of phase‐change Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub>, the proposed method of etching‐free, pixelated laser‐writing fabrication provides a versatile platform for developing reprogrammable diffractive optical elements suitable for a wide range of intelligent photonics applications.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"8 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase‐Change Sb₂S₃ Multilayer Fabry‐Perot Devices: A Novel Approach to Nonvolatile Reprogrammable Multiphase Spatial Modulation\",\"authors\":\"Kun Gao, Feifan Qiang, Zhuonan Jia, Wanqi Yang, Wending Zhang, Lixun Sun, Ting Mei\",\"doi\":\"10.1002/lpor.202401683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonvolatile reconfiguration of optical device characteristics at the micro‐ and nanoscale is essential for advancing intelligent photonics. In this study, a novel approach to nonvolatile, reprogrammable multiphase modulation is presented using multilayer thin‐film Fabry‐Perot devices that incorporate phase‐change Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub>, facilitating low‐cost customization for diverse applications. These devices are fabricated through thin film deposition and feature a pixelated multilevel phase modulation configuration via intermediate phase states of Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> controlled by laser direct writing. The multilayer structures employ a stratification strategy to control grain size and minimize domain formation in the crystalline Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> films, effectively mitigating refractive index inhomogeneity caused by birefringence. The experiments achieved multilevel phase modulations with a maximum reflectance phase modulation exceeding 1.6π. The resulting multiphase holograms effectively eliminate the twin image effect often encountered in binary‐phase holograms, demonstrating the capability of the devices for holographic image reconstruction. Leveraging the unique properties of phase‐change Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub>, the proposed method of etching‐free, pixelated laser‐writing fabrication provides a versatile platform for developing reprogrammable diffractive optical elements suitable for a wide range of intelligent photonics applications.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202401683\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401683","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

在微纳米尺度上,光学器件特性的非易失性重构对于推进智能光子学至关重要。在这项研究中,提出了一种新的非易失性、可重新编程的多相调制方法,该方法使用多层薄膜Fabry - Perot器件,其中包含相变Sb2S3,促进了各种应用的低成本定制。这些器件通过薄膜沉积制成,并通过激光直接写入控制Sb2S3的中间相态,具有像素化的多电平相位调制结构。多层结构采用分层策略来控制晶粒尺寸并减少Sb2S3晶体薄膜中的畴形成,有效地减轻了双折射引起的折射率不均匀性。实验实现了最大反射相位调制超过1.6π的多电平相位调制。由此产生的多相全息图有效地消除了双相全息图中经常遇到的双像效应,证明了该设备具有全息图像重建的能力。利用相变Sb2S3的独特特性,所提出的无蚀刻、像素化激光书写制造方法为开发适用于广泛智能光子学应用的可编程衍射光学元件提供了一个通用平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase‐Change Sb₂S₃ Multilayer Fabry‐Perot Devices: A Novel Approach to Nonvolatile Reprogrammable Multiphase Spatial Modulation
Nonvolatile reconfiguration of optical device characteristics at the micro‐ and nanoscale is essential for advancing intelligent photonics. In this study, a novel approach to nonvolatile, reprogrammable multiphase modulation is presented using multilayer thin‐film Fabry‐Perot devices that incorporate phase‐change Sb2S3, facilitating low‐cost customization for diverse applications. These devices are fabricated through thin film deposition and feature a pixelated multilevel phase modulation configuration via intermediate phase states of Sb2S3 controlled by laser direct writing. The multilayer structures employ a stratification strategy to control grain size and minimize domain formation in the crystalline Sb2S3 films, effectively mitigating refractive index inhomogeneity caused by birefringence. The experiments achieved multilevel phase modulations with a maximum reflectance phase modulation exceeding 1.6π. The resulting multiphase holograms effectively eliminate the twin image effect often encountered in binary‐phase holograms, demonstrating the capability of the devices for holographic image reconstruction. Leveraging the unique properties of phase‐change Sb2S3, the proposed method of etching‐free, pixelated laser‐writing fabrication provides a versatile platform for developing reprogrammable diffractive optical elements suitable for a wide range of intelligent photonics applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信