高强度钢的协同氢脆

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhi Li, Yiran Lu, Huajian Gao, Sharvan Kumar
{"title":"高强度钢的协同氢脆","authors":"Zhi Li, Yiran Lu, Huajian Gao, Sharvan Kumar","doi":"10.1073/pnas.2501850122","DOIUrl":null,"url":null,"abstract":"Hydrogen embrittlement (HE) remains a critical scientific challenge in building reliable infrastructure for a carbon-free hydrogen economy. Predictive models for hydrogen-induced material failure are still lacking, largely due to an incomplete understanding of hydrogen’s effects on deformation behavior, especially in multiphase alloys with complex compositions and microstructures. Here, we demonstrate a synergistic hydrogen embrittlement (SHE) phenomenon in high-strength martensitic steels, where hydrogen interacts with carbon in solution to activate hydrogen-enhanced localized plasticity (HELP). Microcantilever bending tests revealed greater hydrogen susceptibility with higher carbon content, evidenced by a significant reduction in work-hardening capacity, promoting slip localization and reduced ductility. First-principles calculations and theoretical modeling revealed that carbon intensifies hydrogen–dislocation interactions and amplifies hydrogen redistribution around screw dislocations, inhibiting cross-slip. This work integrates experimental and modeling approaches to elucidate the synergistic interactions between hydrogen and solute elements, providing critical insights for designing high-strength, hydrogen-tolerant structural materials.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"22 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic hydrogen embrittlement in high-strength steels\",\"authors\":\"Zhi Li, Yiran Lu, Huajian Gao, Sharvan Kumar\",\"doi\":\"10.1073/pnas.2501850122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogen embrittlement (HE) remains a critical scientific challenge in building reliable infrastructure for a carbon-free hydrogen economy. Predictive models for hydrogen-induced material failure are still lacking, largely due to an incomplete understanding of hydrogen’s effects on deformation behavior, especially in multiphase alloys with complex compositions and microstructures. Here, we demonstrate a synergistic hydrogen embrittlement (SHE) phenomenon in high-strength martensitic steels, where hydrogen interacts with carbon in solution to activate hydrogen-enhanced localized plasticity (HELP). Microcantilever bending tests revealed greater hydrogen susceptibility with higher carbon content, evidenced by a significant reduction in work-hardening capacity, promoting slip localization and reduced ductility. First-principles calculations and theoretical modeling revealed that carbon intensifies hydrogen–dislocation interactions and amplifies hydrogen redistribution around screw dislocations, inhibiting cross-slip. This work integrates experimental and modeling approaches to elucidate the synergistic interactions between hydrogen and solute elements, providing critical insights for designing high-strength, hydrogen-tolerant structural materials.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2501850122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2501850122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

氢脆(HE)仍然是为无碳氢经济建设可靠基础设施的关键科学挑战。氢诱导材料失效的预测模型仍然缺乏,很大程度上是由于对氢对变形行为的影响的理解不完全,特别是在具有复杂成分和显微组织的多相合金中。在这里,我们证明了高强度马氏体钢中的协同氢脆(SHE)现象,其中氢与碳在溶液中相互作用以激活氢增强的局部塑性(HELP)。微悬臂弯曲试验表明,碳含量越高,氢敏感性越高,加工硬化能力显著降低,导致滑移局部化,延性降低。第一性原理计算和理论模型表明,碳强化了氢位错的相互作用,放大了氢在螺位错周围的再分布,抑制了交叉滑移。这项工作整合了实验和建模方法,以阐明氢和溶质元素之间的协同相互作用,为设计高强度、耐氢结构材料提供关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic hydrogen embrittlement in high-strength steels
Hydrogen embrittlement (HE) remains a critical scientific challenge in building reliable infrastructure for a carbon-free hydrogen economy. Predictive models for hydrogen-induced material failure are still lacking, largely due to an incomplete understanding of hydrogen’s effects on deformation behavior, especially in multiphase alloys with complex compositions and microstructures. Here, we demonstrate a synergistic hydrogen embrittlement (SHE) phenomenon in high-strength martensitic steels, where hydrogen interacts with carbon in solution to activate hydrogen-enhanced localized plasticity (HELP). Microcantilever bending tests revealed greater hydrogen susceptibility with higher carbon content, evidenced by a significant reduction in work-hardening capacity, promoting slip localization and reduced ductility. First-principles calculations and theoretical modeling revealed that carbon intensifies hydrogen–dislocation interactions and amplifies hydrogen redistribution around screw dislocations, inhibiting cross-slip. This work integrates experimental and modeling approaches to elucidate the synergistic interactions between hydrogen and solute elements, providing critical insights for designing high-strength, hydrogen-tolerant structural materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信