基于多组学的ncrna -基因-代谢物网络构建为盐胁迫下水稻代谢调控提供了新思路

IF 4.8 1区 农林科学 Q1 AGRONOMY
Rice Pub Date : 2025-06-13 DOI:10.1186/s12284-025-00811-6
Haiyang Tong, Chao Wang, Xiaoqian Han, Qihao Sun, Enxi Luo, Chao Yang, Guo Xu, Xumin Ou, Shixuan Li, Jianing Zhang, Jun Yang
{"title":"基于多组学的ncrna -基因-代谢物网络构建为盐胁迫下水稻代谢调控提供了新思路","authors":"Haiyang Tong, Chao Wang, Xiaoqian Han, Qihao Sun, Enxi Luo, Chao Yang, Guo Xu, Xumin Ou, Shixuan Li, Jianing Zhang, Jun Yang","doi":"10.1186/s12284-025-00811-6","DOIUrl":null,"url":null,"abstract":"<p><p>Rice (Oryza sativa L.), one of the most vital staple crops globally, suffers severe yield losses due to metabolic dysregulation under salt stress. However, the systemic mechanisms by which non-coding RNAs (ncRNAs) coordinately regulate metabolic reprogramming remain elusive, and the genotype-specific regulatory networks in salt-tolerant cultivars are poorly characterized. To address this, we performed metabolomic analysis using ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) across different rice varieties under salt stress, identifying 327 metabolites, with the most notable fluctuations observed in lipids, polyamines, and phenolamides. The salt-tolerant variety Pokkali exhibited 51.96% and 31.37% fewer differentially accumulated metabolites (DAMs) in the shoots and roots respectively, compared to the salt-sensitive variety Nipponbare (NIP), which explains its superior salt-tolerant phenotype from a metabolic homeostasis perspective. Transcriptome profiling revealed 18,597 differentially expressed genes (DEGs), with 70.8% showing genotype-specific expression patterns. Pokkali-specific DEGs were markedly enriched in salt-responsive pathways, including reactive nitrogen species scavenging and ion compartmentalization. By integrating long non-coding RNA (lncRNA) and microRNA (miRNA) sequencing data, we constructed a four-tiered regulatory network comprising 6,201 DEGs, 458 miRNAs, 970 DElncRNAs, and 177 metabolites. In the regulatory network, Osa-miR408-3p was identified as a negative regulator of Os03 g0709300 expression. Network analysis revealed that 21 polyamine and phenolamides biosynthesis-related genes were co-regulated by eight miRNAs, each forming a feedback loop with 2-11 lncRNAs. This study constructed a four-way cascade of \"lncRNA-miRNA-mRNA-metabolite\", and proposed a new concept of ncRNA-mediated \"network regulation instead of single-gene effect\".</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"50"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12165919/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-omics-Based Construction of ncRNA-Gene-Metabolite Networks Provides New Insights Into Metabolic Regulation Under Salt Stress in Rice.\",\"authors\":\"Haiyang Tong, Chao Wang, Xiaoqian Han, Qihao Sun, Enxi Luo, Chao Yang, Guo Xu, Xumin Ou, Shixuan Li, Jianing Zhang, Jun Yang\",\"doi\":\"10.1186/s12284-025-00811-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rice (Oryza sativa L.), one of the most vital staple crops globally, suffers severe yield losses due to metabolic dysregulation under salt stress. However, the systemic mechanisms by which non-coding RNAs (ncRNAs) coordinately regulate metabolic reprogramming remain elusive, and the genotype-specific regulatory networks in salt-tolerant cultivars are poorly characterized. To address this, we performed metabolomic analysis using ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) across different rice varieties under salt stress, identifying 327 metabolites, with the most notable fluctuations observed in lipids, polyamines, and phenolamides. The salt-tolerant variety Pokkali exhibited 51.96% and 31.37% fewer differentially accumulated metabolites (DAMs) in the shoots and roots respectively, compared to the salt-sensitive variety Nipponbare (NIP), which explains its superior salt-tolerant phenotype from a metabolic homeostasis perspective. Transcriptome profiling revealed 18,597 differentially expressed genes (DEGs), with 70.8% showing genotype-specific expression patterns. Pokkali-specific DEGs were markedly enriched in salt-responsive pathways, including reactive nitrogen species scavenging and ion compartmentalization. By integrating long non-coding RNA (lncRNA) and microRNA (miRNA) sequencing data, we constructed a four-tiered regulatory network comprising 6,201 DEGs, 458 miRNAs, 970 DElncRNAs, and 177 metabolites. In the regulatory network, Osa-miR408-3p was identified as a negative regulator of Os03 g0709300 expression. Network analysis revealed that 21 polyamine and phenolamides biosynthesis-related genes were co-regulated by eight miRNAs, each forming a feedback loop with 2-11 lncRNAs. This study constructed a four-way cascade of \\\"lncRNA-miRNA-mRNA-metabolite\\\", and proposed a new concept of ncRNA-mediated \\\"network regulation instead of single-gene effect\\\".</p>\",\"PeriodicalId\":21408,\"journal\":{\"name\":\"Rice\",\"volume\":\"18 1\",\"pages\":\"50\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12165919/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12284-025-00811-6\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-025-00811-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

水稻(Oryza sativa L.)是全球最重要的主要作物之一,在盐胁迫下由于代谢失调而遭受严重的产量损失。然而,非编码rna (ncRNAs)协调调节代谢重编程的系统机制仍然难以捉摸,耐盐品种中基因型特异性调控网络的特征也很差。为了解决这个问题,我们使用超高效液相色谱-串联质谱(UPLC-MS/MS)对盐胁迫下不同水稻品种进行了代谢组学分析,鉴定出327种代谢物,其中脂质、多胺和酚酰胺的波动最为显著。耐盐品种Pokkali在茎部和根部的差异积累代谢物(DAMs)分别比盐敏感品种Nipponbare (NIP)少51.96%和31.37%,这从代谢稳态的角度解释了其优越的耐盐表型。转录组分析显示18,597个差异表达基因(deg),其中70.8%显示基因型特异性表达模式。在盐响应途径中,包括活性氮清除和离子区隔化,pokkali特异性deg显著富集。通过整合长链非编码RNA (lncRNA)和microRNA (miRNA)测序数据,我们构建了一个包含6201个deg、458个miRNA、970个delncrna和177个代谢物的四层调控网络。在调控网络中,Osa-miR408-3p被鉴定为Os03 g0709300表达的负调控因子。网络分析显示,21个多胺和酚酰胺生物合成相关基因被8个mirna共同调控,每个mirna与2-11个lncrna形成一个反馈回路。本研究构建了“lncrna - mirna - mrna -代谢物”的四级级联,提出了ncrna介导的“网络调控而非单基因效应”的新概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-omics-Based Construction of ncRNA-Gene-Metabolite Networks Provides New Insights Into Metabolic Regulation Under Salt Stress in Rice.

Rice (Oryza sativa L.), one of the most vital staple crops globally, suffers severe yield losses due to metabolic dysregulation under salt stress. However, the systemic mechanisms by which non-coding RNAs (ncRNAs) coordinately regulate metabolic reprogramming remain elusive, and the genotype-specific regulatory networks in salt-tolerant cultivars are poorly characterized. To address this, we performed metabolomic analysis using ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) across different rice varieties under salt stress, identifying 327 metabolites, with the most notable fluctuations observed in lipids, polyamines, and phenolamides. The salt-tolerant variety Pokkali exhibited 51.96% and 31.37% fewer differentially accumulated metabolites (DAMs) in the shoots and roots respectively, compared to the salt-sensitive variety Nipponbare (NIP), which explains its superior salt-tolerant phenotype from a metabolic homeostasis perspective. Transcriptome profiling revealed 18,597 differentially expressed genes (DEGs), with 70.8% showing genotype-specific expression patterns. Pokkali-specific DEGs were markedly enriched in salt-responsive pathways, including reactive nitrogen species scavenging and ion compartmentalization. By integrating long non-coding RNA (lncRNA) and microRNA (miRNA) sequencing data, we constructed a four-tiered regulatory network comprising 6,201 DEGs, 458 miRNAs, 970 DElncRNAs, and 177 metabolites. In the regulatory network, Osa-miR408-3p was identified as a negative regulator of Os03 g0709300 expression. Network analysis revealed that 21 polyamine and phenolamides biosynthesis-related genes were co-regulated by eight miRNAs, each forming a feedback loop with 2-11 lncRNAs. This study constructed a four-way cascade of "lncRNA-miRNA-mRNA-metabolite", and proposed a new concept of ncRNA-mediated "network regulation instead of single-gene effect".

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rice
Rice AGRONOMY-
CiteScore
10.10
自引率
3.60%
发文量
60
审稿时长
>12 weeks
期刊介绍: Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信