基于投影的大型聚合物复合材料结构机器人3D打印仿真方法。

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-06-04 DOI:10.3390/polym17111564
Yuen Xia, Kil-Sung Lee, Sung Kyu Ha
{"title":"基于投影的大型聚合物复合材料结构机器人3D打印仿真方法。","authors":"Yuen Xia, Kil-Sung Lee, Sung Kyu Ha","doi":"10.3390/polym17111564","DOIUrl":null,"url":null,"abstract":"<p><p>As large-scale additive manufacturing advances, the reliable prediction of the structural behavior of FDM-printed composites is becoming increasingly important. However, existing finite element methods often oversimplify the material anisotropy introduced by the printing path. This study proposes a projection-based method that maps toolpath-defined fiber orientations directly into a finite element model to represent anisotropic mechanical behavior. The mechanical properties of printed carbon fiber-reinforced ABS were experimentally characterized in three directions (UDL, UDT, and UD10). The results confirmed strong anisotropy, with elastic moduli ranging from 3.2 to 9.8 GPa and tensile strengths from 20 to 81 MPa. The shear modulus and strength obtained from the 10° off-axis tensile tests were 1.17 GPa and 10.9 MPa, respectively. This directional data enabled the implementation of the FE model of a 20 m-long printed ship structure. The predicted mid-span deflection (2.19 mm) differed by only 5% from the experimental measurement (2.08 mm). While effective, this method may face challenges with highly irregular geometries. Nevertheless, it offers a scalable approach for the accurate simulation of FDM-printed composites.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 11","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157892/pdf/","citationCount":"0","resultStr":"{\"title\":\"Projection-Based Simulation Method for Robotic 3D Printing of Large-Scale Polymer Composite Structures.\",\"authors\":\"Yuen Xia, Kil-Sung Lee, Sung Kyu Ha\",\"doi\":\"10.3390/polym17111564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As large-scale additive manufacturing advances, the reliable prediction of the structural behavior of FDM-printed composites is becoming increasingly important. However, existing finite element methods often oversimplify the material anisotropy introduced by the printing path. This study proposes a projection-based method that maps toolpath-defined fiber orientations directly into a finite element model to represent anisotropic mechanical behavior. The mechanical properties of printed carbon fiber-reinforced ABS were experimentally characterized in three directions (UDL, UDT, and UD10). The results confirmed strong anisotropy, with elastic moduli ranging from 3.2 to 9.8 GPa and tensile strengths from 20 to 81 MPa. The shear modulus and strength obtained from the 10° off-axis tensile tests were 1.17 GPa and 10.9 MPa, respectively. This directional data enabled the implementation of the FE model of a 20 m-long printed ship structure. The predicted mid-span deflection (2.19 mm) differed by only 5% from the experimental measurement (2.08 mm). While effective, this method may face challenges with highly irregular geometries. Nevertheless, it offers a scalable approach for the accurate simulation of FDM-printed composites.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 11\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157892/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17111564\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17111564","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着大规模增材制造的发展,对fdm打印复合材料结构行为的可靠预测变得越来越重要。然而,现有的有限元方法往往过于简化了打印路径引入的材料各向异性。本研究提出了一种基于投影的方法,将刀具路径定义的纤维取向直接映射到有限元模型中,以表示各向异性力学行为。从UDL、UDT和UD10三个方向对打印碳纤维增强ABS的力学性能进行了实验表征。结果表明,材料具有较强的各向异性,弹性模量为3.2 ~ 9.8 GPa,抗拉强度为20 ~ 81 MPa。10°离轴拉伸试验的剪切模量和强度分别为1.17 GPa和10.9 MPa。这些方向数据使20米长的打印船舶结构的有限元模型得以实现。预测的跨中挠度(2.19 mm)与实验测量值(2.08 mm)仅相差5%。虽然有效,但这种方法可能面临高度不规则几何形状的挑战。然而,它为精确模拟fdm打印复合材料提供了一种可扩展的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projection-Based Simulation Method for Robotic 3D Printing of Large-Scale Polymer Composite Structures.

As large-scale additive manufacturing advances, the reliable prediction of the structural behavior of FDM-printed composites is becoming increasingly important. However, existing finite element methods often oversimplify the material anisotropy introduced by the printing path. This study proposes a projection-based method that maps toolpath-defined fiber orientations directly into a finite element model to represent anisotropic mechanical behavior. The mechanical properties of printed carbon fiber-reinforced ABS were experimentally characterized in three directions (UDL, UDT, and UD10). The results confirmed strong anisotropy, with elastic moduli ranging from 3.2 to 9.8 GPa and tensile strengths from 20 to 81 MPa. The shear modulus and strength obtained from the 10° off-axis tensile tests were 1.17 GPa and 10.9 MPa, respectively. This directional data enabled the implementation of the FE model of a 20 m-long printed ship structure. The predicted mid-span deflection (2.19 mm) differed by only 5% from the experimental measurement (2.08 mm). While effective, this method may face challenges with highly irregular geometries. Nevertheless, it offers a scalable approach for the accurate simulation of FDM-printed composites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信