José I Contreras Raggio, Miguel Pardo, Pablo Núñez, Carola Millán, Gilberto Siqueira, Humberto Palza, Juan F Vivanco, Ameet K Aiyangar
{"title":"工艺参数对3d打印支架用聚己内酯-生物活性玻璃复合材料可打印性和力学生物学性能的影响。","authors":"José I Contreras Raggio, Miguel Pardo, Pablo Núñez, Carola Millán, Gilberto Siqueira, Humberto Palza, Juan F Vivanco, Ameet K Aiyangar","doi":"10.3390/polym17111554","DOIUrl":null,"url":null,"abstract":"<p><p>Direct ink writing (DIW) is an attractive, extrusion-based, additive manufacturing method for fabricating scaffold structures with controlled porosity using custom composite inks. Polycaprolactone-bioactive glass (PCL-BG) inks have gained attention for bone applications, but optimizing the formulation and fabrication of PCL-BG-based inks for improved printability and desired mechano-biological properties remains a challenge. This study employs a two-step design to systematically evaluate the effect of three factors in terms of PCL-BG composite printability and mechano-biological properties: ink preparation (acetone or dichloromethane (DCM) as the solvent, and mechanical compounding), the extrusion temperature (90 °C, 110 °C, and 130 °C), and the BG content (0%, 10%, and 20% BG). Pure PCL was used as the control. Rheological, calorimetric, and thermo-gravimetric analyses were conducted before printing. Cylindrical scaffolds and solid wells were printed to evaluate the printability, mechanical properties, and cytocompatibility. The scaffold porosity and pore size were carefully examined. Mechanical tests demonstrated that composite formulations with added BG and higher printing temperatures increased the elastic modulus and yield strength. However, PCL-DCM-BG combinations exhibited increased brittleness with higher BG content. Despite concerns about the toxic solvent DCM, the cytocompatibility was comparable to pure PCL for all ink preparation methods. The results suggest that the interaction between the ink preparation solvent, the BG content, and the printing temperature is critical for material design and fabrication planning in bone tissue engineering applications, providing insights into optimizing PCL-BG composite ink formulations for 3D printing in bone tissue engineering.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 11","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158094/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of Processing Parameters on the Printability and Mechano-Biological Properties of Polycaprolactone-Bioactive Glass Composites for 3D-Printed Scaffold Fabrication.\",\"authors\":\"José I Contreras Raggio, Miguel Pardo, Pablo Núñez, Carola Millán, Gilberto Siqueira, Humberto Palza, Juan F Vivanco, Ameet K Aiyangar\",\"doi\":\"10.3390/polym17111554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Direct ink writing (DIW) is an attractive, extrusion-based, additive manufacturing method for fabricating scaffold structures with controlled porosity using custom composite inks. Polycaprolactone-bioactive glass (PCL-BG) inks have gained attention for bone applications, but optimizing the formulation and fabrication of PCL-BG-based inks for improved printability and desired mechano-biological properties remains a challenge. This study employs a two-step design to systematically evaluate the effect of three factors in terms of PCL-BG composite printability and mechano-biological properties: ink preparation (acetone or dichloromethane (DCM) as the solvent, and mechanical compounding), the extrusion temperature (90 °C, 110 °C, and 130 °C), and the BG content (0%, 10%, and 20% BG). Pure PCL was used as the control. Rheological, calorimetric, and thermo-gravimetric analyses were conducted before printing. Cylindrical scaffolds and solid wells were printed to evaluate the printability, mechanical properties, and cytocompatibility. The scaffold porosity and pore size were carefully examined. Mechanical tests demonstrated that composite formulations with added BG and higher printing temperatures increased the elastic modulus and yield strength. However, PCL-DCM-BG combinations exhibited increased brittleness with higher BG content. Despite concerns about the toxic solvent DCM, the cytocompatibility was comparable to pure PCL for all ink preparation methods. The results suggest that the interaction between the ink preparation solvent, the BG content, and the printing temperature is critical for material design and fabrication planning in bone tissue engineering applications, providing insights into optimizing PCL-BG composite ink formulations for 3D printing in bone tissue engineering.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 11\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158094/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17111554\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17111554","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Effect of Processing Parameters on the Printability and Mechano-Biological Properties of Polycaprolactone-Bioactive Glass Composites for 3D-Printed Scaffold Fabrication.
Direct ink writing (DIW) is an attractive, extrusion-based, additive manufacturing method for fabricating scaffold structures with controlled porosity using custom composite inks. Polycaprolactone-bioactive glass (PCL-BG) inks have gained attention for bone applications, but optimizing the formulation and fabrication of PCL-BG-based inks for improved printability and desired mechano-biological properties remains a challenge. This study employs a two-step design to systematically evaluate the effect of three factors in terms of PCL-BG composite printability and mechano-biological properties: ink preparation (acetone or dichloromethane (DCM) as the solvent, and mechanical compounding), the extrusion temperature (90 °C, 110 °C, and 130 °C), and the BG content (0%, 10%, and 20% BG). Pure PCL was used as the control. Rheological, calorimetric, and thermo-gravimetric analyses were conducted before printing. Cylindrical scaffolds and solid wells were printed to evaluate the printability, mechanical properties, and cytocompatibility. The scaffold porosity and pore size were carefully examined. Mechanical tests demonstrated that composite formulations with added BG and higher printing temperatures increased the elastic modulus and yield strength. However, PCL-DCM-BG combinations exhibited increased brittleness with higher BG content. Despite concerns about the toxic solvent DCM, the cytocompatibility was comparable to pure PCL for all ink preparation methods. The results suggest that the interaction between the ink preparation solvent, the BG content, and the printing temperature is critical for material design and fabrication planning in bone tissue engineering applications, providing insights into optimizing PCL-BG composite ink formulations for 3D printing in bone tissue engineering.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.