Irina Yu Zhuravleva, Anna A Dokuchaeva, Andrey A Vaver, Ludmila V Kreiker, Elena V Kuznetsova, Rostislav I Grek
{"title":"生物聚合物/缝合线聚合物相互作用:是生物修复钙化的关键吗?","authors":"Irina Yu Zhuravleva, Anna A Dokuchaeva, Andrey A Vaver, Ludmila V Kreiker, Elena V Kuznetsova, Rostislav I Grek","doi":"10.3390/polym17111576","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to evaluate the effect of suture material made of polyester (PET), polypropylene (PP), and polytetrafluoroethylene (PTFE) on the calcification of a bovine pericardium (BP) consisting of collagen biopolymer preserved with an epoxy compound. Non-porous film made of the synthetic reinforced polymer REPEREN<sup>®</sup> was chosen as a control material. Samples of the material (sutured or non-sutured with each of the three types of surgical sutures) were implanted subcutaneously in 45 young rats for 30, 60, and 90 days. The calcium content of the explants was quantified using atomic absorption spectrometry, a histological examination was performed using hematoxylin and eosin and von Kossa staining, and the structure of the calcium phosphate deposits was studied using scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) with color field mapping. The results demonstrated the absence of calcification in the non-sutured BP and in all the REPEREN<sup>®</sup> groups. In the sutured BP samples, a dynamic increase in the Ca content and the Ca/P ratio to 1.67-1.7 (crystalline hydroxyapatite) was observed by the 90th day. The minimum Ca content among the sutured BP groups was detected in samples where the PET thread was used. The cellular reaction to BP was significantly more pronounced than the reaction to REPEREN<sup>®</sup> throughout the entire observation period; collagen homogenization was noted near the sutures. It can be concluded that all the studied suture materials provoke BP calcification. PET has the minimal negative effect.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 11","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157850/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biopolymer/Suture Polymer Interaction: Is It a Key of Bioprosthetic Calcification?\",\"authors\":\"Irina Yu Zhuravleva, Anna A Dokuchaeva, Andrey A Vaver, Ludmila V Kreiker, Elena V Kuznetsova, Rostislav I Grek\",\"doi\":\"10.3390/polym17111576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study was to evaluate the effect of suture material made of polyester (PET), polypropylene (PP), and polytetrafluoroethylene (PTFE) on the calcification of a bovine pericardium (BP) consisting of collagen biopolymer preserved with an epoxy compound. Non-porous film made of the synthetic reinforced polymer REPEREN<sup>®</sup> was chosen as a control material. Samples of the material (sutured or non-sutured with each of the three types of surgical sutures) were implanted subcutaneously in 45 young rats for 30, 60, and 90 days. The calcium content of the explants was quantified using atomic absorption spectrometry, a histological examination was performed using hematoxylin and eosin and von Kossa staining, and the structure of the calcium phosphate deposits was studied using scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) with color field mapping. The results demonstrated the absence of calcification in the non-sutured BP and in all the REPEREN<sup>®</sup> groups. In the sutured BP samples, a dynamic increase in the Ca content and the Ca/P ratio to 1.67-1.7 (crystalline hydroxyapatite) was observed by the 90th day. The minimum Ca content among the sutured BP groups was detected in samples where the PET thread was used. The cellular reaction to BP was significantly more pronounced than the reaction to REPEREN<sup>®</sup> throughout the entire observation period; collagen homogenization was noted near the sutures. It can be concluded that all the studied suture materials provoke BP calcification. PET has the minimal negative effect.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 11\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17111576\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17111576","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Biopolymer/Suture Polymer Interaction: Is It a Key of Bioprosthetic Calcification?
The aim of this study was to evaluate the effect of suture material made of polyester (PET), polypropylene (PP), and polytetrafluoroethylene (PTFE) on the calcification of a bovine pericardium (BP) consisting of collagen biopolymer preserved with an epoxy compound. Non-porous film made of the synthetic reinforced polymer REPEREN® was chosen as a control material. Samples of the material (sutured or non-sutured with each of the three types of surgical sutures) were implanted subcutaneously in 45 young rats for 30, 60, and 90 days. The calcium content of the explants was quantified using atomic absorption spectrometry, a histological examination was performed using hematoxylin and eosin and von Kossa staining, and the structure of the calcium phosphate deposits was studied using scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) with color field mapping. The results demonstrated the absence of calcification in the non-sutured BP and in all the REPEREN® groups. In the sutured BP samples, a dynamic increase in the Ca content and the Ca/P ratio to 1.67-1.7 (crystalline hydroxyapatite) was observed by the 90th day. The minimum Ca content among the sutured BP groups was detected in samples where the PET thread was used. The cellular reaction to BP was significantly more pronounced than the reaction to REPEREN® throughout the entire observation period; collagen homogenization was noted near the sutures. It can be concluded that all the studied suture materials provoke BP calcification. PET has the minimal negative effect.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.