MPSE在新生儿重症监护病房入院后48小时内对新生儿进行全基因组测序。

IF 4.7 2区 医学 Q1 GENETICS & HEREDITY
Bennet Peterson, Edwin F Juarez, Barry Moore, Edgar Javier Hernandez, Erwin Frise, Jianrong Li, Yves Lussier, Martin Tristani-Firouzi, Martin G Reese, Sabrina Malone Jenkins, Stephen F Kingsmore, Matthew N Bainbridge, Mark Yandell
{"title":"MPSE在新生儿重症监护病房入院后48小时内对新生儿进行全基因组测序。","authors":"Bennet Peterson, Edwin F Juarez, Barry Moore, Edgar Javier Hernandez, Erwin Frise, Jianrong Li, Yves Lussier, Martin Tristani-Firouzi, Martin G Reese, Sabrina Malone Jenkins, Stephen F Kingsmore, Matthew N Bainbridge, Mark Yandell","doi":"10.1038/s41525-025-00506-3","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying critically ill newborns who will benefit from whole genome sequencing (WGS) is difficult and time-consuming due to complex eligibility criteria and evolving clinical features. The Mendelian Phenotype Search Engine (MPSE) automates the prioritization of neonatal intensive care unit (NICU) patients for WGS. Using clinical data from 2885 NICU patients, we evaluated the utility of different machine learning (ML) classifiers, clinical natural language processing (CNLP) tools, and types of Electronic Health Record (EHR) data to identify sick newborns with genetic diseases. Our results show that MPSE can identify children most likely to benefit from WGS within the first 48 h after NICU admission, a critical window for maximally impactful care. Moreover, MPSE provided stable, robust means to identify these children using many combinations of classifiers, CNLP tools, and input data types-meaning MPSE can be used by diverse health systems despite differences in EHR contents and IT support.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"10 1","pages":"47"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162843/pdf/","citationCount":"0","resultStr":"{\"title\":\"MPSE identifies newborns for whole genome sequencing within 48 h of NICU admission.\",\"authors\":\"Bennet Peterson, Edwin F Juarez, Barry Moore, Edgar Javier Hernandez, Erwin Frise, Jianrong Li, Yves Lussier, Martin Tristani-Firouzi, Martin G Reese, Sabrina Malone Jenkins, Stephen F Kingsmore, Matthew N Bainbridge, Mark Yandell\",\"doi\":\"10.1038/s41525-025-00506-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying critically ill newborns who will benefit from whole genome sequencing (WGS) is difficult and time-consuming due to complex eligibility criteria and evolving clinical features. The Mendelian Phenotype Search Engine (MPSE) automates the prioritization of neonatal intensive care unit (NICU) patients for WGS. Using clinical data from 2885 NICU patients, we evaluated the utility of different machine learning (ML) classifiers, clinical natural language processing (CNLP) tools, and types of Electronic Health Record (EHR) data to identify sick newborns with genetic diseases. Our results show that MPSE can identify children most likely to benefit from WGS within the first 48 h after NICU admission, a critical window for maximally impactful care. Moreover, MPSE provided stable, robust means to identify these children using many combinations of classifiers, CNLP tools, and input data types-meaning MPSE can be used by diverse health systems despite differences in EHR contents and IT support.</p>\",\"PeriodicalId\":19273,\"journal\":{\"name\":\"NPJ Genomic Medicine\",\"volume\":\"10 1\",\"pages\":\"47\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162843/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Genomic Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41525-025-00506-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-025-00506-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

由于复杂的资格标准和不断变化的临床特征,确定将从全基因组测序(WGS)中受益的危重新生儿是困难和耗时的。孟德尔表型搜索引擎(MPSE)自动优先新生儿重症监护病房(NICU)患者的WGS。利用来自2885名NICU患者的临床数据,我们评估了不同机器学习(ML)分类器、临床自然语言处理(CNLP)工具和电子健康记录(EHR)数据类型在识别患有遗传性疾病的患病新生儿中的应用。我们的研究结果表明,MPSE可以在NICU入院后的前48小时内确定最有可能从WGS中受益的儿童,这是最大限度地发挥护理作用的关键窗口。此外,MPSE通过分类器、CNLP工具和输入数据类型的多种组合提供了稳定、强大的方法来识别这些儿童,这意味着尽管电子病历内容和IT支持存在差异,MPSE可以被不同的卫生系统使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MPSE identifies newborns for whole genome sequencing within 48 h of NICU admission.

Identifying critically ill newborns who will benefit from whole genome sequencing (WGS) is difficult and time-consuming due to complex eligibility criteria and evolving clinical features. The Mendelian Phenotype Search Engine (MPSE) automates the prioritization of neonatal intensive care unit (NICU) patients for WGS. Using clinical data from 2885 NICU patients, we evaluated the utility of different machine learning (ML) classifiers, clinical natural language processing (CNLP) tools, and types of Electronic Health Record (EHR) data to identify sick newborns with genetic diseases. Our results show that MPSE can identify children most likely to benefit from WGS within the first 48 h after NICU admission, a critical window for maximally impactful care. Moreover, MPSE provided stable, robust means to identify these children using many combinations of classifiers, CNLP tools, and input data types-meaning MPSE can be used by diverse health systems despite differences in EHR contents and IT support.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NPJ Genomic Medicine
NPJ Genomic Medicine Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍: npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine. The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信