Dr. Mingfa Xie, Dr. Shijie Yuan, Dr. Guangsong Li, Prof. Hongjian Peng
{"title":"基于Ce6和菊花素共轭物的自组装纳米药物提高了光动力性能。","authors":"Dr. Mingfa Xie, Dr. Shijie Yuan, Dr. Guangsong Li, Prof. Hongjian Peng","doi":"10.1016/j.nano.2025.102836","DOIUrl":null,"url":null,"abstract":"<div><div>Conjugates based on photosensitizer Ce6 and chemotherapeutic drug chrysin, when dispersed into water with DMSO, can rapidly self-assemble into nanoparticles. In Ce6-TEGDM-Chrysin, the two triethylene glycol monomethyl ether (TEGDM) chains enhance molecular polarity and hydrophilicity. Notably, one of the TEGDM chains extends toward the porphyrin ring plane, forming a wrapping configuration that increases steric hindrance to π-π stacking on the molecular plane. As a novel photosensitizer, Ce6-TEGDM-Chrysin exhibits outstanding photophysical properties, with a fluorescence lifetime of 3.10 ns, a fluorescence quantum yield of 18.3 %, and a singlet oxygen quantum yield of 46.2 % in DCM. Compared to Ce6-OMe-Chrysin as well as the co-assembled nanoparticle Ce6@Chrysin of Ce6 and chrysin, Ce6-TEGDM-Chrysin not only demonstrates superior photodynamic activity against melanoma but also exhibits a strong enrichment ability in mouse tumor tissues due to the EPR effect of nanodrugs and the inherent tumor affinity of porphyrins.</div></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"68 ","pages":"Article 102836"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-assembled nanomedicine of the conjugate based on Ce6 and chrysin improves photodynamic performance\",\"authors\":\"Dr. Mingfa Xie, Dr. Shijie Yuan, Dr. Guangsong Li, Prof. Hongjian Peng\",\"doi\":\"10.1016/j.nano.2025.102836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conjugates based on photosensitizer Ce6 and chemotherapeutic drug chrysin, when dispersed into water with DMSO, can rapidly self-assemble into nanoparticles. In Ce6-TEGDM-Chrysin, the two triethylene glycol monomethyl ether (TEGDM) chains enhance molecular polarity and hydrophilicity. Notably, one of the TEGDM chains extends toward the porphyrin ring plane, forming a wrapping configuration that increases steric hindrance to π-π stacking on the molecular plane. As a novel photosensitizer, Ce6-TEGDM-Chrysin exhibits outstanding photophysical properties, with a fluorescence lifetime of 3.10 ns, a fluorescence quantum yield of 18.3 %, and a singlet oxygen quantum yield of 46.2 % in DCM. Compared to Ce6-OMe-Chrysin as well as the co-assembled nanoparticle Ce6@Chrysin of Ce6 and chrysin, Ce6-TEGDM-Chrysin not only demonstrates superior photodynamic activity against melanoma but also exhibits a strong enrichment ability in mouse tumor tissues due to the EPR effect of nanodrugs and the inherent tumor affinity of porphyrins.</div></div>\",\"PeriodicalId\":19050,\"journal\":{\"name\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"volume\":\"68 \",\"pages\":\"Article 102836\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963425000371\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963425000371","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Self-assembled nanomedicine of the conjugate based on Ce6 and chrysin improves photodynamic performance
Conjugates based on photosensitizer Ce6 and chemotherapeutic drug chrysin, when dispersed into water with DMSO, can rapidly self-assemble into nanoparticles. In Ce6-TEGDM-Chrysin, the two triethylene glycol monomethyl ether (TEGDM) chains enhance molecular polarity and hydrophilicity. Notably, one of the TEGDM chains extends toward the porphyrin ring plane, forming a wrapping configuration that increases steric hindrance to π-π stacking on the molecular plane. As a novel photosensitizer, Ce6-TEGDM-Chrysin exhibits outstanding photophysical properties, with a fluorescence lifetime of 3.10 ns, a fluorescence quantum yield of 18.3 %, and a singlet oxygen quantum yield of 46.2 % in DCM. Compared to Ce6-OMe-Chrysin as well as the co-assembled nanoparticle Ce6@Chrysin of Ce6 and chrysin, Ce6-TEGDM-Chrysin not only demonstrates superior photodynamic activity against melanoma but also exhibits a strong enrichment ability in mouse tumor tissues due to the EPR effect of nanodrugs and the inherent tumor affinity of porphyrins.
期刊介绍:
The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine.
Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.