Adrianna Fałowska, Stanisław Grzybowski, Daniel Kapuściński, Karol Sambora, Agnieszka Łapczuk
{"title":"环戊二烯-硝基烯- alder反应中反应活性和区域选择性的一般趋势建模。","authors":"Adrianna Fałowska, Stanisław Grzybowski, Daniel Kapuściński, Karol Sambora, Agnieszka Łapczuk","doi":"10.3390/molecules30112467","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a theoretical investigation of the electronic properties of mono- and pentasubstituted cyclopentadiene analogs and variously substituted conjugated nitroalkenes bearing electron-donating and electron-withdrawing groups. Conceptual Density Functional Theory (CDFT) and Electron Localization Function (ELF) analyses were employed to characterize the global and local reactivity indices of the reactants. The obtained data provided insights into the nucleophilic and electrophilic nature of the investigated systems, allowing for the prediction of their reactivity patterns in Diels-Alder reactions. A reactivity model for conjugated alkenes toward cyclopentadienes was developed based on correlation analysis using Hammett substituent constants. This approach enabled the prediction of reaction polarity in (4+2) cycloaddition processes, providing insight into how the electronic effects of substituents influence the reaction course. These findings contribute to a deeper understanding of structure-reactivity relationships in Diels-Alder processes.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12156356/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modeling of the General Trends of Reactivity and Regioselectivity in Cyclopentadiene-Nitroalkene Diels-Alder Reactions.\",\"authors\":\"Adrianna Fałowska, Stanisław Grzybowski, Daniel Kapuściński, Karol Sambora, Agnieszka Łapczuk\",\"doi\":\"10.3390/molecules30112467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents a theoretical investigation of the electronic properties of mono- and pentasubstituted cyclopentadiene analogs and variously substituted conjugated nitroalkenes bearing electron-donating and electron-withdrawing groups. Conceptual Density Functional Theory (CDFT) and Electron Localization Function (ELF) analyses were employed to characterize the global and local reactivity indices of the reactants. The obtained data provided insights into the nucleophilic and electrophilic nature of the investigated systems, allowing for the prediction of their reactivity patterns in Diels-Alder reactions. A reactivity model for conjugated alkenes toward cyclopentadienes was developed based on correlation analysis using Hammett substituent constants. This approach enabled the prediction of reaction polarity in (4+2) cycloaddition processes, providing insight into how the electronic effects of substituents influence the reaction course. These findings contribute to a deeper understanding of structure-reactivity relationships in Diels-Alder processes.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":\"30 11\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12156356/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules30112467\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30112467","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Modeling of the General Trends of Reactivity and Regioselectivity in Cyclopentadiene-Nitroalkene Diels-Alder Reactions.
This study presents a theoretical investigation of the electronic properties of mono- and pentasubstituted cyclopentadiene analogs and variously substituted conjugated nitroalkenes bearing electron-donating and electron-withdrawing groups. Conceptual Density Functional Theory (CDFT) and Electron Localization Function (ELF) analyses were employed to characterize the global and local reactivity indices of the reactants. The obtained data provided insights into the nucleophilic and electrophilic nature of the investigated systems, allowing for the prediction of their reactivity patterns in Diels-Alder reactions. A reactivity model for conjugated alkenes toward cyclopentadienes was developed based on correlation analysis using Hammett substituent constants. This approach enabled the prediction of reaction polarity in (4+2) cycloaddition processes, providing insight into how the electronic effects of substituents influence the reaction course. These findings contribute to a deeper understanding of structure-reactivity relationships in Diels-Alder processes.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.