{"title":"基于光敏硅的可调谐多功能超材料的单向无反射、偏振转换和非对称传输。","authors":"Xue Ren, Yiwen Zhang, Yingqiao Zhang, Xingri Jin","doi":"10.3390/ma18112614","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a tunable multi-functional metamaterial composed of two pairs of gold corner resonators interconnected with photosensitive silicon, operating in the terahertz range. This design achieves dual-band unidirectional reflectionlessness, polarization conversion, and asymmetric transmission for linearly polarized waves, regardless of whether the photosensitive silicon is in the insulating or conductivity state. When the photosensitive silicon transitions from the insulating state to the conductivity state, its conductivity increases significantly, resulting in a frequency shift phenomenon in the functional peak frequencies. Numerical simulations demonstrate the structure's robust performance in dual-band unidirectional reflectionlessness and its significant asymmetric transmission, with minimal sensitivity to variations in the incident angle and photosensitive silicon sheet length. By integrating multiple functionalities and enabling frequency tunability through the control of photosensitive silicon conductivity, this design offers a reconfigurable solution for THz applications, such as switches, polarization converters, and modulators.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12156847/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tunable Multi-Functional Metamaterial Based on Photosensitive Silicon for Unidirectional Reflectionlessness, Polarization Conversion, and Asymmetric Transmission.\",\"authors\":\"Xue Ren, Yiwen Zhang, Yingqiao Zhang, Xingri Jin\",\"doi\":\"10.3390/ma18112614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a tunable multi-functional metamaterial composed of two pairs of gold corner resonators interconnected with photosensitive silicon, operating in the terahertz range. This design achieves dual-band unidirectional reflectionlessness, polarization conversion, and asymmetric transmission for linearly polarized waves, regardless of whether the photosensitive silicon is in the insulating or conductivity state. When the photosensitive silicon transitions from the insulating state to the conductivity state, its conductivity increases significantly, resulting in a frequency shift phenomenon in the functional peak frequencies. Numerical simulations demonstrate the structure's robust performance in dual-band unidirectional reflectionlessness and its significant asymmetric transmission, with minimal sensitivity to variations in the incident angle and photosensitive silicon sheet length. By integrating multiple functionalities and enabling frequency tunability through the control of photosensitive silicon conductivity, this design offers a reconfigurable solution for THz applications, such as switches, polarization converters, and modulators.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 11\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12156847/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18112614\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18112614","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Tunable Multi-Functional Metamaterial Based on Photosensitive Silicon for Unidirectional Reflectionlessness, Polarization Conversion, and Asymmetric Transmission.
We propose a tunable multi-functional metamaterial composed of two pairs of gold corner resonators interconnected with photosensitive silicon, operating in the terahertz range. This design achieves dual-band unidirectional reflectionlessness, polarization conversion, and asymmetric transmission for linearly polarized waves, regardless of whether the photosensitive silicon is in the insulating or conductivity state. When the photosensitive silicon transitions from the insulating state to the conductivity state, its conductivity increases significantly, resulting in a frequency shift phenomenon in the functional peak frequencies. Numerical simulations demonstrate the structure's robust performance in dual-band unidirectional reflectionlessness and its significant asymmetric transmission, with minimal sensitivity to variations in the incident angle and photosensitive silicon sheet length. By integrating multiple functionalities and enabling frequency tunability through the control of photosensitive silicon conductivity, this design offers a reconfigurable solution for THz applications, such as switches, polarization converters, and modulators.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.